Cho a,b > 0 và a + b = 1
Tìm GTNN : A = (a4 + b4) + \(\frac{1}{ab}\)
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
c) \(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{9}{2.3}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x=y=1
Cho a>b>0 và a-b=7 và ab=60. Không tính a,b hãy tính a2-b2 và a4+b4
\(a>b>0\Rightarrow a+b>0\)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab=7^2+4.60=289\Rightarrow a+b=17\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=7.17=119\)
\(a^2+b^2=\left(a-b\right)^2+2ab=7^2+2.60=169\)
\(\Rightarrow a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=169^2-2.60^2=21361\)
Cho a >b>0 và a-b=7, ab = 60. không tính a;b hãy tính a2 - b2, a4 + b4.
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=7\cdot\sqrt{\left(a-b\right)^2+4ab}\)
\(=7\cdot\sqrt{7^2+4\cdot60}=119\)
cho a + b + c = 0. Chứng minh đẳng thức:
a) a4 + b4 + c4 = 2(a2b2 + b2c2 +c2a2); b) a4 + b4 + c4 = 2(ab + bc + ca)2;
a4 + b4 + c4 =(a2+b2+c2)2 /2
Cho a-b=1 và a.b=12. Không tìm a và b hãy tính: a4+b4
\(a^4+b^4=a^4+4a^2b^2+b^4-4a^2b^2\)
\(=\left(a^2+b^2\right)-4a^2b^2\)
\(=\left[\left(a-b\right)^2-2ab\right]^2-4\cdot\left(ab\right)^2\)
\(=\left(1^2-2\cdot12\right)^2-4\cdot12^2\)
\(=\left(1-24\right)^2-4\cdot144\)
\(=\left(-23\right)^2-576=-47\)
\(a^2+b^2=\left(a-b\right)^2+2ab=1^2+2.12=25\)
\(a^4+b^4=\left(a^2+b^2\right)-2\left(ab\right)^2=25^2-2.12^2=337\)
Với a,b > 0 thỏa mãn điều kiện a + b +ab = 1, giá trị nhỏ nhất của P = a 4 + b 4 bằng.
A.
B.
C.
D.
Cho a,b>0 và a+b<1. Tìm GTNN của A=ab+\(\frac{1}{ab}\)
Áp dụng BĐT Cô - Si cho hai số dương \(ab\)và \(\frac{1}{ab}\), ta có :
\(ab+\frac{1}{ab}\ge2\sqrt{ab.\frac{1}{ab}}=2\sqrt{1}=2\)
\(\Rightarrow ab+\frac{1}{ab}\ge2\)
\(0< a;b< 1\) thì không tìm được GTNN
bạn Phạm Thị Thùy Linh làm nhầm rồi ĐK dấu bằng không xảy ra vì \(ab< \frac{1}{4}\)
Đề bài nên sửa thành \(a+b\le1\)thì Min=17/4
cho a,b >0 và a+b=1. tìm GTNN của P=\(\frac{1}{a^2+b^2}+\frac{1}{ab}\)
Cho a,b >0 và a +b =1
Tìm GTNN của C = \(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
\(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\)
Vì \(a,b>0\)\(\Rightarrow\) Áp dụng bất đẳng thức cộng mẫu ta có:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{1}=4\)
Vì \(a,b>0\)\(\Rightarrow\)Áp dụng bđt Cô si ta có: \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow2\sqrt{ab}\le1\)\(\Rightarrow\left(2\sqrt{ab}\right)^2\le1\)
\(\Leftrightarrow4ab\le1\)\(\Leftrightarrow2ab\le\frac{1}{2}\)\(\Rightarrow\frac{1}{2ab}\ge2\)
\(\Rightarrow C=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4+2=6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(minC=6\)\(\Leftrightarrow x=y=\frac{1}{2}\)
bài này đã có rất nhiều bạn hỏi rồi
Ta có hai bất đẳng thức phụ quen thuộc sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*) ; \(2xy\le\frac{\left(x+y\right)^2}{2}\)(**)
BĐT(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng)
BĐT(**)\(< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng
Lại có \(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\)
Sử dụng bất đẳng thức phụ (*) : \(C\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}=\frac{1}{2ab}+\frac{4}{\left(a+b\right)^2}=\frac{1}{2ab}+4\)
Sử dụng bất đẳng thức phụ (**) : \(\frac{1}{2ab}+4\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+4=2+4=6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy GTNN của C = 6 đạt được khi a = b = 1/2