Chứng minh 4n+1 và 2n+1 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
chứng minh: 2n + 1 và 4n + 6 là 2 số nguyên tố cùng nhau
Gọi ƯCLN của 2n+1 và 4n+6 là d (d thuộc N sao)
=> 2n+1 và 4n+6 đều chia hết cho d
=> 2.(2n+1) và 4n+6 đều chia hết cho d
=> 4n+2 và 4n+6 đều chia hết cho d
=> 4n+6-4n-2 chia hết cho d hay 4 chia hết cho d
Mà 2n+1 lẻ nên d lẻ => d =1 ( vì d thuộc N sao)
=> 2n+1 và 4n+6 là 2 số nguyên tố cùng nhau (ĐPCM)
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Chứng minh rằng :
2n + 1 và 4n + 3 là 2 số nguyên tố cùng nhau
chứng minh 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
Gọi ước chung của 2n + 3 và 4n + 8 là d
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\left(2n+3\right)⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
4n + 6 - 4n - 8 ⋮ d
2 ⋮ d
d \(\in\) Ư(2) = {1; 2)
Nếu d = 2 ⇒ 2n + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lí loại)
Vậy d = 1; hay 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau (đpcm)
chứng minh rằng các số sau là số nguyên tố cùng nhau
4n +5 và 2n +2
Gọi d là ƯCLN(4n + 5; 2n + 2)
⇒ (4n + 5) ⋮ d
(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d
⇒ [(4n + 5) - (4n + 4)] ⋮ d
⇒ (4n + 5 - 4n - 4) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d
Ta có: 4n + 5 ⋮ d
2n + 2 ⋮ d
⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4 ⋮ d
⇒ 4n + 5 - (4n + 4) ⋮ d
4n + 5 - 4n - 4 ⋮ d
1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1
Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)
Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)
Đề bài có sai ko bạn
Tạm gọi d là ước chung của hai số
Ta có:
\(\hept{\begin{cases}2n+1⋮d\\4n+12⋮d\end{cases}}\)
\(\hept{\begin{cases}4n+2⋮d\\4n+12⋮d\end{cases}}\)
\(\Rightarrow\left(4n+12\right)-\left(4n+2\right)⋮d
\)
\(\Rightarrow10⋮d\)
????
. Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)