Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh Anh
Xem chi tiết
nguyen mai chi
20 tháng 4 2016 lúc 16:46

)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC

Trần Văn Bắc
Xem chi tiết
Rhider
28 tháng 2 2022 lúc 7:51

Đề lỗi quá nhiều x ngược

Mời bạn đăng lại câu hỏi

Điền
Xem chi tiết
Điền
29 tháng 8 2021 lúc 10:45

Điểm M và N lần lượt  thuộc các cạnh BC ,SD

Ngô Thành Chung
29 tháng 8 2021 lúc 15:02

Ngô Thành Chung
29 tháng 8 2021 lúc 15:07

títtt
Xem chi tiết
meme
28 tháng 8 2023 lúc 19:18

a) Để tìm giao điểm của đường thẳng SB và mặt phẳng (ABC), chúng ta cần tìm điểm giao nhau của đường thẳng SB và mặt phẳng (ABC). Điểm này sẽ nằm trên cả hai đường thẳng SB và mặt phẳng (ABC). Để tìm điểm này, ta có thể sử dụng phương pháp giao điểm giữa đường thẳng và mặt phẳng. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng SB, có thể được xác định bằng cách sử dụng hai điểm S và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng SB và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

b) Tương tự, để tìm giao điểm của đường thẳng HB và mặt phẳng (SAC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng HB, có thể được xác định bằng cách sử dụng hai điểm H và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HB và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

c) Để tìm giao điểm của đường thẳng BK và mặt phẳng (SAC), ta cũng có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng BK, có thể được xác định bằng cách sử dụng hai điểm B và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng BK và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

d) Tương tự, để tìm giao điểm của đường thẳng HK và mặt phẳng (ABC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng HK, có thể được xác định bằng cách sử dụng hai điểm H và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HK và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 19:37

loading...  loading...  

títtt
Xem chi tiết
meme
11 tháng 9 2023 lúc 19:52

Để tìm giao điểm của SB và mp(ABC), ta cần tìm giao điểm của hai đường thẳng SB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Vì I là trung điểm BC, ta có thể xác định được mặt phẳng ABC. Sau đó, ta tìm giao điểm của đường thẳng SB và mặt phẳng ABC.

Để tìm giao điểm của HB và mp(SAC), ta cần tìm giao điểm của hai đường thẳng HB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng HB và mặt phẳng SAC.

Để tìm giao điểm của BK và mp(SAC), ta cần tìm giao điểm của hai đường thẳng BK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng BK và mặt phẳng SAC.

Để tìm giao điểm của HK và mp(ABC), ta cần tìm giao điểm của hai đường thẳng HK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Tương tự như trên, ta xác định được mặt phẳng ABC và sau đó tìm giao điểm của đường thẳng HK và mặt phẳng ABC.

Bo
Xem chi tiết
Trần Thị Yến
1 tháng 3 2020 lúc 21:40
Bn viết rĩ hơn đc k
Khách vãng lai đã xóa
Lê Việt	Hoàng
12 tháng 6 2020 lúc 20:45

ngu\(\hept{\begin{cases}3\\3\end{cases}\hept{\begin{cases}5\\5\\5\end{cases}}5555555b5b5b55b}\)

Khách vãng lai đã xóa
dũng xuân
Xem chi tiết
dũng xuân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2019 lúc 5:52

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta cũng có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (MIJ) ∩ (ABD) = d = Mt và Mt // AB // IJ

b) Ta có: Mt // AB ⇒ Mt ∩ BD = N

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì K ∈ IN ⇒ K ∈ (BCD)

Và K ∈ JM ⇒ K ∈ (ACD)

Mặt khác (BCD) ∩ (ACD) = CD do đó K ∈ CD. Do vậy K nằm trên hai nửa đường thẳng Cm và Dn thuộc đường thẳng CD. ( Để ý rằng nếu M là trung điểm của AD thì sẽ không có điểm K.)

c) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11