Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Nhiên
Xem chi tiết
Phan Thủy Tiên
Xem chi tiết
Phạm Ngọc Ánh Thư
Xem chi tiết
Bảo Thiii
Xem chi tiết

Gọi E là giao điểm của PQ và AB

Ta có: MNPQ là hình bình hành

=>MN//PQ

=>\(\hat{BMN}=\hat{BEP}\) (hai góc đồng vị)

\(\hat{BEP}=\hat{QPD}\) (hai góc so le trong, AB//CD)

nên \(\hat{BMN}=\hat{DPQ}\)

Xét ΔBMN và ΔDPQ có

\(\hat{BMN}=\hat{DPQ}\)

\(\hat{MBN}=\hat{PDQ}\) (ABCD là hình bình hành)

Do đó: ΔBMN~ΔDPQ

=>\(\frac{BM}{DP}=\frac{BN}{DQ}=\frac{MN}{PQ}=1\)

=>BM=DP; BN=DQ

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường(1)

Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(2)

ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra BD,MP,NQ,AC đồng quy tại trung điểm của mỗi đường

hay hình bình hành MNPQ có chung tâm O với hình bình hành ABCD

Trần Đăng Khang
Xem chi tiết
Hân Hân
Xem chi tiết
Thảo Hoàng Thị
Xem chi tiết
Thành họ Bùi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:46

\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)

Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)

Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\) 

\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)

\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)

Hân Nguyễn
Xem chi tiết
Ngọc Hưng
22 tháng 9 2023 lúc 23:10

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)

\(=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OD}\right)=4\overrightarrow{MO}\)

(Do \(\overrightarrow{OA}=-\overrightarrow{OC};\overrightarrow{OB}=-\overrightarrow{OD}\))

A B C D O