Cho biểu thức:
\(P=|3x-3|+2x+1\)
a) Rút gọn P.
b) Tìm x để P=6.
cho biểu thức P=2/2x+3+3/2x+1-6x/(2x+1)(2x+3)
a)Tìm ĐKXĐ của P.
b) rút gọn P
c)tìm giá trị của x để P=-1
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
Cho biểu thức P = \(\dfrac{2x}{x-2}+\dfrac{4}{x^2-5x+6}-\dfrac{1}{x-3}\)
a) Tìm điều kiện để P có nghĩa và rút gọn P.
b) Tìm tất cả các giá trị của x để P nguyên.
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)
b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)
- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)
Vậy ...
a ĐKXĐ : \(x\ne2,x\ne3\)
\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)
Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)
\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\)
Thử lại ta thấy đúng
Vậy...
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Bài 1 (2điểm)
1) Nêu điều kiện để √a có nghĩa ?
2) Áp dụng: Tìm x để các căn thức sau có nghĩa:
Bài 2: ( 3 điểm ): Rút gọn biểu thức
Bài 3 ( 4 điểm ) Cho biểu thức
(Với x > 0; x 1; x4)
a/ Rút gọn P.
b/ Với giá trị nào của x thì P có giá trị bằng 1/4
c/ Tính giá trị của P tại x = 4 + 2√3
d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ?
Bài 4 : ( 1 điểm ): Cho
Tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
cho biểu thức P=|3x-3| +2x+1
a. Rút gọn P
B. Tìm x để P=6
bài này quản lí đã làm ở đây nè bạn :
http://olm.vn/hoi-dap/question/97592.html
cho biểu thức P=|3x-3| +2x+1
a, rút gọn P
b, tìm x để P=6
P = |3x - 3| + 2x + 1
a) Với x âm thì P = -3x - 3 + 2x + 1 = -1x - 3 + 1 = -x - 2
Với x dương thì P = 3x - 3 + 2x + 1 = 5x - 3 + 1 = 5x - 2 (1)
b) P = |3x + 3| + 2x + 1 = 6
Vì kết quả là số dương nên x cũng dương. Từ (1) ta có :
5x - 2 = 6
=> 5x = 8
=> x = 1,6
a)
+) Nếu 3x - 3 \(\ge\) 0 => x \(\ge\) 1 => |3x - 3| = 3x - 3 => P = 3x - 3 + 2x + 1 = 5x - 2
+) Nếu 3x - 3 < 0 => x < 1 => |3x - 3| = -(3x - 3) = -3x + 3 => P = -3x + 3 + 2x + 1 = - x + 4
Vậy P = 5x - 2 khi x \(\ge\) 1 và P = - x + 4 khi x < 1
b) P = 6
+) Nếu x \(\ge\) 1 => 5x - 2 = 6 => 5x = 8 => x = 8 : 5 = 1,6 (Thoả mãn)
+) Nếu x < 1 => - x + 4 = 6 => - x = 6 - 4 = 2 => x = -2 (Thoả mãn)
Vậy x = 1,6 hoặc x = -2 thì P = 6
Cho biểu thức P=|3x-3|+2x+1
a, Rút gọn P
b, Tìm giá trọ của x để P=6
P = |3x - 3| + 2x + 1
a) Với x âm thì P = -3x - 3 + 2x + 1 = -1x - 3 + 1 = -x - 2
Với x dương thì P = 3x - 3 + 2x + 1 = 5x - 3 + 1 = 5x - 2 (1)
b) P = |3x + 3| + 2x + 1 = 6 Vì kết quả là số dương nên x cũng dương. Từ (1) ta có :
5x - 2 = 6
=> 5x = 8
=> x = 1,6
a) xét 2 th
th1)x>=1=>P=3x-3+2x+1=5x-2
th2)x<1=>P=3-3x+2x+1=4-x
b)theo a) nếu x>=1=>P=5x-2
=>5x-2=6=>x=8/5 (thđk)
nếu x<1=>P=4-x
=>4-x=5=>x=-1(tmđk)
Ta có :
+/ với 3x - 3 \(\ge\)0 => x \(\ge\)1
=> |3x - 3| = 3x - 3
=> |3x - 3| + 2x + 1 = 3x - 3 + 2x + 1 = 5x - 2
+/ với 3x - 3 < 0 => x < 1
=> |3x - 3| = -(3x - 3) = -3x + 3
=> |3x - 3| + 2x + 1 = -3x + 3 + 2x + 1 = -x + 4
Để P = 6 , ta xét 2 trường hợp
5x - 2 = 6 => x = 8/5
-x + 4 = 6 => x = -2
Cho biểu thức:
a) Rút gọn P.
b) Tìm giá trị nhỏ nhất của P.
c) Tìm x để biểu thức Q= nhận giá trị là số nguyên.
a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Cho biểu thức P=|3x-3|+2x+1
a) rút gọn biểu thức P
b)Tìm giá trị của P để x=6
Cho biểu thức: P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) Rút gọn P.
b) Tìm x để P ≤ -2.
a) ĐK: x ≥ 0; x ≠ 9; x≠4
P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\left(x+2\right)\left(x-2\right)-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-4+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{x^2-4-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+2}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}+2}\)
=\(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{x^2-3x+2}{x-4}\)
b) P ≤ -2
⇒ \(\dfrac{x^2-3x+2}{x-4}\) ≤ -2
⇔ \(\dfrac{x^2-3x+2}{x-4}\) + 2 ≤ 0
⇔ \(\dfrac{x^2-3x+2+2\left(x-4\right)}{x-4}\) ≤ 0
⇔ \(\dfrac{x^2-3x+2+2x-8}{x-4}\) ≤ 0
⇔\(\dfrac{x^2-x-6}{x-4}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x-6\ge0\\x-4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x-6\le0\\x-4>0\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x\le2\\3\le x< 4\end{matrix}\right.\)
Vậy.......