Tìm các số nguyên dương p,q,r sao cho: \(pqr-1⋮\left(p-1\right)\left(q-1\right)\left(r-1\right)\)
Cho hàm số \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\).Tìm các số nguyên dương x,y sao cho:
\(S=f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)
Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)
\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)
\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
\(\text{Tìm tất cả các cặp số nguyên dương }\left(k;n\right)\text{sao cho}:\)
\(k!=\left(2^n-1\right)\left(2^n-2\right)\left(2^n-4\right)...\left(2^n-2^{n-1}\right)\)
1) Cho \(P\left(x\right),Q\left(x\right)\inℤ\left[x\right]\). Giả sử với mọi số nguyên dương \(n\) thì \(P\left(n\right),Q\left(n\right)>0\) đồng thời tồn tại \(d\) nguyên dương sao cho \(gcd\left(P\left(n\right),Q\left(n\right)\right)\le d\) với mọi \(n\) nguyên dương. Biết \(2^{Q\left(n\right)}-1|3^{P\left(n\right)}-1\) với mọi \(n\) nguyên dương. Chứng minh rằng \(Q\left(x\right)\) là đa thức hằng.
2) Cho \(p\) là số nguyên tố sao cho \(q=2p+1\) cũng là số nguyên tố. Chứng minh rằng \(q\) có bội mà tổng các chữ số không quá 3.
Tìm các số n nguyên dương sao cho \(\left(n^3-8n^2+2n\right)⋮\left(n^2+1\right)\)
1) Tìm các số nguyên dương a và b sao cho \(a^2+5a+12=\left(a+2\right)b^2+\left(a^2+6a+8\right)b\)
2) Tìm các số nguyên m và n sao cho \(\left(m^2+n\right)\left(n^2+m\right)=\left(m-n\right)^3\)
3) Cho các số không âm a, b, c sao cho a + b + c = 3. Tìm GTNN của P = ab + bc + ca - \(\frac{1}{2}abc\)
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)
Tìm các số nguyên dương a,b,c đôi một nguyên tố cùng nhau sao cho \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)là số nguyên.
Tìm tất cả các cặp số nguyên dương \(\left(a;b\right)\)
sao cho \(\left(a+b^2\right)\)chia hết cho \(\left(a^2b-1\right)\)
Cho \(A=\left\{x\in R|\left(x+1\right)^2+\left(x-1\right)^2=10\right\};B=\left\{x\in R|\left(x+1\right)^4+\left(x-1\right)^4=82\right\}\)Tìm tập X sao cho A\(\cup\)X=B.
Tìm các số nhuyên dương x sao cho tồn tại các số nguyên dương a;b thỏa mãn đẳng thức :
\(\left(x^2+2\right)^a=\left(2x-1\right)^b\)