Tìm GTNN của biểu thức:
A = |x - 2019| + |x - 2020| + 2
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
tìm gtnn của biểu thức p=|x-1|+căn x-2019 +|x-2020|
Tìm GTNN của biểu thức: P=|x-2017|+|x-2019|+|x-2020|+|y-2021|
Hình như là vậy á
Chúc bạn học tốt
cho x,y thõa mãn :2x2 +y2+9=6x+2xy
tính giá trị biểu thức:A=x2019 y2020 - x2020 y2019 +1/9xy
tìm GTNN của biểu thức:A=/x-3/+/x-2/
thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)
dấu = xảy ra <=> tích của chúng = nhau
Tìm GTNN và GTLN của các biểu thức:
\(a,P=\sqrt{x}+\sqrt{2-x}\)
\(b,Q=\sqrt{x-2019}+\sqrt{2020-x}\)
Tìm GTLN,GTNN của |x- 2018|+|x- 2019|+|x-2020|
Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)
\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)
(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2020\))
Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)
Đặt \(B=\left|x-2019\right|\ge0\)
(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))
Vậy \(B_{min}=0\Leftrightarrow x=2019\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))
Vậy \(BT_{min}=2\Leftrightarrow x=2019\)
Tìm GTNN của M= |x-2018|+|x-2019|+2020
Ta có: M = |x - 2018| + |x - 2019| + 2020
M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018 + 2019 - x| + 2020 = |1| + 2020 = 2021
Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0
<=> 2x - 4037 = 0
<=> 2x = 4037
<=> x = 2018,5
Vậy Min của M = 2021 tại x = 2018,5
Sửa lại một đoạn:
Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0
<=> 2018 \(\le\)x \(\le\)2019
Bài 1: Tìm GTNN của biểu thức sau: B= |x-2018|+|x-2019|+|x-2020|
Bài 2: Tìm GTNN của biểu thức sau: C=\(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon caccau trc :3
Bài 2:
\(C=\frac{2019}{\sqrt{x}+3}\)
Vì C có tử = 2019 ko đổi
\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min
+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)
+Dấu ''='' xảy ra khi ......tự lm :))
\(\Rightarrow\)Mẫu đạt min = 3 khi x=...
\(\Rightarrow\)C max = ... khi x=....
BÀi 1:
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)
+Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=2019\)
+Vậy \(B_{min}=2\) khi \(x=2019\)