Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đinh khánh ngân
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Khách vãng lai đã xóa
ho thi lanh
Xem chi tiết
Lê Anh Thái
Xem chi tiết
hao dang
4 tháng 8 2021 lúc 8:24

undefinedHình như là vậy á 

              Chúc bạn học tốt

Khách vãng lai đã xóa
Hà Linh
Xem chi tiết
Moon Moon
Xem chi tiết
vũ tiền châu
24 tháng 12 2017 lúc 1:01

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

Công chúa thủy tề
Xem chi tiết
Khánh Xuân
Xem chi tiết
Kiệt Nguyễn
9 tháng 11 2019 lúc 18:37

Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)

\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)

(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow2018\le x\le2020\))

Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)

Đặt \(B=\left|x-2019\right|\ge0\)

(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))

Vậy \(B_{min}=0\Leftrightarrow x=2019\)

\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))

Vậy \(BT_{min}=2\Leftrightarrow x=2019\)

Khách vãng lai đã xóa
nguyen thi thu huong
Xem chi tiết
Edogawa Conan
11 tháng 7 2019 lúc 9:41

Ta có: M = |x - 2018| + |x - 2019| + 2020

       M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018  + 2019 - x| + 2020 = |1| + 2020 = 2021

Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0

      <=> 2x - 4037 = 0

      <=> 2x = 4037

     <=> x = 2018,5

Vậy Min của M = 2021 tại x = 2018,5

Edogawa Conan
11 tháng 7 2019 lúc 10:05

Sửa lại một đoạn:

Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0

      <=> 2018 \(\le\)\(\le\)2019

đinh khánh ngân
Xem chi tiết
Ngô Bá Hùng
17 tháng 11 2019 lúc 21:42

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

Khách vãng lai đã xóa
Ngô Bá Hùng
17 tháng 11 2019 lúc 21:46

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)

Khách vãng lai đã xóa