Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Akai Haruma
10 tháng 3 2021 lúc 23:28

Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.

Trương Huy Hoàng
10 tháng 3 2021 lúc 22:49

a3 + b3 + 3abc \(\ge\) ab(a + b + c)

\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0

\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0

\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)

Chúc bn học tốt!

Hồ Quốc Khánh
Xem chi tiết
chu minh nam
Xem chi tiết
Đức Lộc
2 tháng 10 2019 lúc 19:53

Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\)\(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).

Cộng từng vế 3 bất đẳng thức trên ta được:

\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

=> đpcm.

Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Nguyễn Hoàng Ánh Tuyết
Xem chi tiết
tth_new
20 tháng 1 2020 lúc 8:43

Có: \(VT-VP=\frac{\left(b^2+c^2-2a^2\right)^2+\left(b-c\right)^2\left(\Sigma_{cyc}a^2+3\Sigma_{cyc}ab\right)}{2a+b+c}\ge0\)

Done!

Khách vãng lai đã xóa
Nano Thịnh
Xem chi tiết
Seri cute
Xem chi tiết
Nhõi
31 tháng 5 2020 lúc 18:48

Ta biến đối tương đương:

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow4\left(a+b\right)\left(a^2-ab+b^2\right)\Leftrightarrow\left(a+b\right)\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)( chia hia vế cho số dương a+b)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\) là đúng.

trần xuân quyến
Xem chi tiết
Lê Quốc Anh
21 tháng 11 2018 lúc 20:46

T = (1+a)(1+b)(1+c) = 1 + (a + b + c) + (ab + bc + ac) + abc.

Áp dụng \(A+B+C\ge3\sqrt[3]{ABC}\left(A,B,C\ge0\right)\),

ta có: \(T\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}=\left(1+\sqrt[3]{abc}\right)^3\left(đpcm\right)\)

Chúc bạn học tốt

What is love?
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2022 lúc 12:54

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)