\(2x^3y+4x^2y^2-12xy\)
tìm x;y
a) 4x2+13y+12xy−18y−4x+104x2+13y+12xy−18y−4x+10
b) 4x2+12xy+9y2+4y2−18y−4x+104x2+12xy+9y2+4y2−18y−4x+10
c) (2x+3y)2−2(2x+3y)+1+4y2−12y+9(2x+3y)2−2(2x+3y)+1+4y2−12y+9
d) (2x+3y−1)+(2y−3)2=0
tìm x;y
a) \(4x^2+13y+12xy-18y-4x+10\)
b) \(4x^2+12xy+9y^2+4y^2-18y-4x+10\)
c) \(\left(2x+3y\right)^2-2\left(2x+3y\right)+1+4y^2-12y+9\)
d) \(\left(2x+3y-1\right)+\left(2y-3\right)^2=0\)
c: =>(2x+3y-1)^2+(2x-3y)=0
=>2x-3y=0 và 2x+3y=1
=>x=1/4; y=1/6
d: =>2y-3=0 và 2x+3y-1=0
=>y=3/2 và 2x=1-3y=1-9/2=-7/2
=>x=-7/4 và y=3/2
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)
Tính
1(3x-5y).(3x+5y)
2(2x-3y).(4x^2+6xy+9y^2)
3(4x+3y).(16x^2-12xy+9y^2)
4)8x^3+12x^2+6x+1
5)27x^3+54x^2y+36xy^2+8y^3
Rút gọn phân thức:
\(a,\dfrac{4x^3}{10x^2y}\)
\(b,\dfrac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}\)
\(a,\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(b,\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{6}\)
Hok Tốt~~
\(\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{4}\)
Tham khảo nhé~
a) \(=\frac{2x}{5y}\)
b) \(=\frac{5y^4}{4}\)
#Học_tốt
Thực hiện phép chia:
a. (-2x^5+3x^2-4x^3):2x^2
b .(x^3-2x^2y+3xy^2):(-1/2x)
c. (3x^2y^2+6x^2y^3-12xy^2):3xy
d. (4x^3-3x^2y+5xy^2):0,5x
e. (18x^3y^5-9x^2y^2+6xy^2):3xy^2
f. (x^4+2x^2y^2+y^4):(x^2+y^2)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
Rút gọn phân thức:
\(a,\dfrac{4x^3}{10x^2y}\)
\(b,\dfrac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}\)
a: \(=\dfrac{2x^2\cdot2x}{2x^2\cdot5y}=\dfrac{2x}{5y}\)
b: \(=\dfrac{10xy^5}{12xy}=\dfrac{2xy\cdot5y^4}{2xy\cdot6}=\dfrac{5y^4}{6}\)
Tính giá trị biểu thức: N=8x^3-12x^2y+6xy^2 -y^3+12x^2=12xy+3y^2+6x-3y+11 với 2x-y=9
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$