Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
khoakhoa
22 tháng 11 2017 lúc 11:44

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé

Nguyễn Thị Lan Anh
Xem chi tiết
Akai Haruma
30 tháng 9 2024 lúc 19:56

Lời giải:

$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$

Để $A$ là scp thì $n^2+3n+3$ là scp.

Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.

$\Rightarrow 4n^2+12n+12=4x^2$

$\Rightarrow (2n+3)^2+3=4x^2$

$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$

Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.

cfefwe
Xem chi tiết
Lại Thị Ngọc Mai
Xem chi tiết
Nguyen HIen
5 tháng 3 2017 lúc 21:43

-6;(-1);5 

Phan Thị Hà Vy
Xem chi tiết
Thắng Phạm
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
2 tháng 8 2023 lúc 17:47

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

doraemon
Xem chi tiết