Chứng minh rằng : 2014 x 2015 x 2016 x 2017 + 1 Là hợp số
chứng minh rằng với mọi số tự nhiên n thì
(n+2016^2015)x(n+2017^2014) chia hết cho 2
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
Tuy bài làm của bạn ko giống như bài của cô mình chữa nhưng mình cũng rất cảm ơn bạn nhé Nguyễn Lâm Văn
CHO A = 2014/(2014+2015) + 2015/(2015+2016) + 2016/(2016+2017)
chứng tỏ rằng giá trị biểu thức A ko phải là số nguyên
1)Cho P là số nguyên tố lớn hơn 3. Chứng minh rằng p2 +2015 là hợp số
2)Tìm x,y biết (2x-5)2014+(3y+4)2016<=0
cho x=1+2+2^2+2^3+......................................+2^2014+2^2015
và y=2^2016
Chứng minh rằng x,y là hai số tự nhiên liên tiếp
x = 1+2+22+23+.....+22015
2x = 2+22+23+24+....+22016
2x- x = 22016 - 1
=> x = 22016 - 1
Có y - x = 22016 - (22016 - 1) = 1
=> x và y là 2 số tự nhiên liên tiếp (Đpcm)
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
chứng minh rằng |x+2014|+|x+2015|+|x+2016|>hoac=2
a, x+1/2017 + x+2/2016 = x+3/2015 + x+4/2014
Mong cac ban giai giup minh voi
\(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)
\(\Leftrightarrow\frac{x+1}{2017}+1+\frac{x+2}{2016}+1=\frac{x+3}{2015}+1+\frac{x+4}{2014}+1\)
\(\Leftrightarrow\frac{x+2018}{2017}+\frac{x+2018}{2016}-\frac{x+2018}{2015}-\frac{x+2018}{2014}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\ne0\right)=0\Leftrightarrow x=-2018\)
x-1/2017 + x-2/2016 = x-3/2015 + x-4/2014
\(x-\dfrac{1}{2017}+x-\dfrac{2}{2016}=x-\dfrac{3}{2015}+x-\dfrac{4}{2014}\)
\(\Rightarrow x+x-x-x=-\dfrac{4}{2014}-\dfrac{3}{2015}+\dfrac{2}{2016}+\dfrac{1}{2017}\)
\(\Rightarrow0=-\dfrac{4}{2014}-\dfrac{3}{2015}+\dfrac{2}{2016}+\dfrac{1}{2017}\) (vô lí)
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\Leftrightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\Leftrightarrow x=2018\)
Ta có: \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Leftrightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Leftrightarrow x-2018=0\)
hay x=2018
Tìm x biết:
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
trừ mỗi vế cho 2 rồi tách -2 thành -1và -1
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\)\(\frac{x+2014}{2015}-1+\frac{x+2015}{2016}-1=\frac{x+2016}{2017}-1+\frac{x+2017}{2018}-1\)
\(\Leftrightarrow\)\(\frac{x-1}{2015}+\frac{x-1}{2016}=\frac{x-1}{2017}+\frac{x-1}{2018}\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow\)\(x-1=0\) ( do 1/2015 + 1/2016 - 1/2017 - 1/2018 # 0 )
\(\Leftrightarrow\) \(x=1\)