Ai giả cho mk bài này với
tìm GTLN A= 5 + 2xy + 14y - x\(^2\) - 5y\(^2\) - 2x
Câu 1 : Tìm GTLN của biểu thức : A = 5 + 2xy + 14y - x2 - 5y2 - 2
A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
= -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
= -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
2y-3 = 0
<=> x = y-1
y = 3/2
<=> x = 3/2 - 1 = 1/2
hnay toàn gặp thần đồng toán học ko zậy =))
A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
= -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
= -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
2y-3 = 0
<=> x = y-1
y = 3/2
<=> x = 3/2 - 1 = 1/2
Bài 5. (1 điểm) Tìm giá trị lớn nhất của biểu thức $A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x$.
\(A=5+2xy+14y-x^2-5y^2-2x\)
\(A=-x^2+2xy-2x-y^2+2y-1-4y^2+12y-9+15\)
\(A=-\left[x^2-2x\left(y-1\right)+\left(y-1\right)^2\right]-\left(2y-3\right)^2+15\)
\(A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Mà: \(\left\{{}\begin{matrix}-\left(x-y+1\right)^2\le0\\-\left(2y-3\right)^2\le0\end{matrix}\right.\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra khi:
\(y=\dfrac{3}{2};x=\dfrac{1}{2}\)
Vậy: \(A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)
Bài 1:Tìm GTNN của biểu thức:
P=x^2+2xy+3y^2+5y+10
Bài 2:Tìm GTLN của biểu thức:
P=4/2x^2 +2xy+y^2+5x+20
2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)
\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)
Để P đạt GTLN
=> Mẫu thức đạt GTNN
mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)
Thay x = -5/2 và y = 5/2 vào P
Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)
Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2
1) Ta có P = x2 + 2xy + 3y2 + 5y + 10
= (x2 + 2xy + y2) + (2y2 + 5y + 10)
= \(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)
= \(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)
Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4
Tìm GTNN
A)=2x^2+2xy+5y^2-8x-22y
B)=x^4-2x^3+3x^2-2x+1
........ai trả lời đúng ..mk tick cho nha
CÂU NÀY RẤT DỄ. ANH ĐÃ BIẾT KẾT QUẢ TỪ KHI MỚI NHÌN ĐẦU BÀI: KẾT QUẢ LÀ .Z.O.L.......L.O.Z..............................FDGR...................HAPPY........BEAUTYFULLY.>>>>>,<<<<<<<<< .THẰNG NÀO KO HIỂU CHỨNG TỎ NGU . THANKS
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
Giúp mk nha
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
Tìm giá trị nhỏ nhất của biểu thức sau:
A=2x^2-6x-2xy+y^2+10
Tìm giá trị lớn nhất của biểu thức sau:
A=5+2xy+14y-x^2-5y^2-2x
1. \(A=2x^2-6x-2xy+y^2+10\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)
Vậy minA = 1 \(\Leftrightarrow x=y=3\)
2. \(A=5+2xy+14y-x^2-5y^2-2x\)
\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)
\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Vì \(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)
\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10
⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1
⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1
Vì (x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y
⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1
Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3
Vậy minA = 1 ⇔x=y=3⇔x=y=3
2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x
⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15
⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15
Vì {(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y
⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15
Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32
Vậy maxA = 15 ⇔{x=12y=32
Tìm x, y để đa thức sau đạt GTLN: \(C=2018-2x^2-y^2+2xy-10x+14y\)
Tìm GTLN : -x^2- 3y^2-2xy+10x+14y-18
Đặt \(A=-x^2-3y^2-2xy+10x+14y-18\)
Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)
\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)
\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)
\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)
Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)
\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge5\)
\(\Leftrightarrow A\le-5\)
Dấu " = " xảy ra khi:
\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )
Giải hộ mình bài này với
Đề bài : Tìm số nguyên x ;y thỏa mãn
a) 2xy + x + y = 7
b) 3xy - 2x + 5y = 29
A, Ta có : 2xy + x + y = 7
=> 2(2xy + x + y) = 2 . 7
=> 4xy + 2x + 2y = 14
=> (4xy + 2x) + 2y + 1 = 14 + 1
=> 2x(2y + 1) + (2y + 1) = 15
=> (2x + 1)(2y + 1) = 15
=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}
Vậy ta có bảng :
2x + 1 | -15 | -1 | -3 | -5 | 15 | 1 | 3 | 5 |
2y + 1 | -1 | -15 | -5 | -3 | 1 | 15 | 5 | 3 |
x | -8 | -1 | -2 | -3 | 7 | 0 | 1 | 2 |
y | -1 | -8 | -3 | -2 | 0 | 7 | 2 | 1 |
=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)