Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bí Mật
Xem chi tiết
lê trần uyên thy
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 9 2019 lúc 22:01

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+3abc-c^3\ge0\)

\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ac+bc\right)-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ac+bc\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}+c^2+ac+bc\right]\ge0\) (1)

Do a; b; c là độ dài 3 cạnh của 1 tam giác nên \(a+b>c\Rightarrow a+b-c>0\)

\(\Rightarrow\left(1\right)\) luôn đúng

Nhưng dấu "=" ko xảy ra nên BĐT đã cho bị sai :(

Trần Thanh Phương
24 tháng 9 2019 lúc 22:04

\(a^3+b^3+3abc\ge c^3\)

\(\Leftrightarrow a^3+b^3+3abc-c^3\ge0\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+3abc-3a^2b-3ab^2-c^3\ge0\)

\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ca+bc\right)-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ca+bc\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\cdot\frac{1}{2}\cdot\left[\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]\ge0\)

( luôn đúng với \(a;b;c\) là 3 cạnh tam giác )

Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}a+b=c\\\left\{{}\begin{matrix}a=b\\a=-c;b=-c\end{matrix}\right.\end{matrix}\right.\)

\(a;b;c>0\Leftrightarrow a+b=c\)

꧁༺ΑЅЅΑЅΙИঔ
Xem chi tiết
nguyễn ngọc dinh
24 tháng 3 2019 lúc 17:58

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{matrix}\right.\)

Đặt \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(A=\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}+\frac{\frac{y+z}{2}}{x}\)

\(A=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(A=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge6\sqrt[6]{\frac{x}{2y}.\frac{z}{2y}.\frac{x}{2z}.\frac{y}{2z}.\frac{z}{2x}.\frac{y}{2x}}=6.\frac{1}{2}=3\)

Dấu " = " xảy ra <=> x=y=z <=> a=b=c

Nguyễn Thành Trương
24 tháng 3 2019 lúc 17:54

Áp dụng BĐT AM-GM ta có $\sum \frac{a}{b+c-a} \ge 3 \sqrt[3]{ \frac{abc}{(a+b-c)(b+c-a)(c+a-b)}} \ge 3$.

Dấu đẳng thức xảy ra khi và chỉ khi $a=b=c$.

Y
24 tháng 3 2019 lúc 18:04

Vì a,b,c là 3 cạnh của 1 tam giác nên \(\left\{{}\begin{matrix}b+c-a>0\\a+b-c>0\\c+a-b>0\end{matrix}\right.\)

* Ta cm bđt : \(a^2+b^2+c^2\ge ab+bc+ca\)

+ \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Do đó : \(-\left(a^2+b^2+c^2\right)\le ab+bc+ca\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(\le2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\le ab+bc+ca\)

+ \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Do đó : \(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\le\frac{\left(a+b+c\right)^2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

* Áp dụng bđt Cauchy Schwaz ta có :

\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\) \(=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ac+bc-c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\) \(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Ngô Duy Quý
Xem chi tiết
Ngô Duy Quý
30 tháng 1 2017 lúc 13:59

mình nhầm.câu hỏi 2=-1

Diệu Ngọc Nguyễn
Xem chi tiết
Diệu Ngọc Nguyễn
20 tháng 11 2016 lúc 10:04

bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.

huy ngo
Xem chi tiết
Đỗ Trâm Anh
15 tháng 2 2016 lúc 22:26
a+b+c=0=>a=-b-c =>a.a=(-b-c)(-b-c) =>a.a=b.b+2bc+c.c =>a.a-b.b-c.c=2bcbình phương 2 vế ta dc a.a.a.a+b.b.b.b+c.c.c.c-2a.a.b.b-2a.a.c.c+2b.b.c.c=4a.a.b.b <=>a^4+b^4+c^4=2a^2+2b^2+2c^2 <=>2( a^4+b^4+c^4)=a^4+b^4+c^4+2a^2+2b^2+2c^2  <=>2( a^4+b^4+c^4)=( a^2+b^2+c^2)^2

 vì  a^2+b^2+c^2=2009 nên 2( a^4+b^4+c^4)=2009 <=>a^4+b^4+c^4=1004,5

huy ngo
27 tháng 2 2016 lúc 19:56

sai rồi bạn ơi

Nguyễn Ngọc Sơn
Xem chi tiết
Ngọc Minh
Xem chi tiết
Toru
20 tháng 8 2023 lúc 17:08

Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)

\(\Rightarrow x+y+z=a+b-c+b+c-a+c+a-b\)

\(=a+b+c\)

Thay \(x;y;z;x+y+z\) vào M, ta được:

\(M=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3-z^3\)

\(=x^3+y^3+z^3-x^3-y^3-z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)\)\(=3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=3\left(x+y\right)\left(xy+xz+zy+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(a+b-c+c+a-b\right)\)

\(=3.2b.2c.2a=24abc\)

Vì \(24abc⋮24\forall a,b,c\) nên \(M⋮24\)

Vậy...