Tìm số nguyên n sao cho : 3n+1 ⋮ \(n^2+n+1\)
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
Tìm số nguyên n sao cho:
a) (n+1)/(n-2) là số nguyên âm.
b) (n+7)/(3n-1) là số nguyên.
c) (3n+2)/(4n-5) là số tự nhiên.
a: ĐKXĐ: n<>2
Đặt \(A=\frac{n+1}{n-2}\)
Để A là số nguyên âm thì \(\begin{cases}n+1\vdots n-2\\ \frac{n+1}{n-2}<0\end{cases}\Rightarrow\begin{cases}n-2+3\vdots n-2\\ -1
=>\(\begin{cases}3\vdots n-2\\ -1
=>n=1
b: \(\frac{n+7}{3n-1}\) là số nguyên
=>n+7⋮3n-1
=>3n+21⋮3n-1
=>3n-1+22⋮3n-1
=>22⋮3n-1
=>3n-1∈{1;-1;2;-2;11;-11;22;-22}
=>3n∈{2;0;3;-1;12;-10;23;-21}
=>n∈{2/3;0;1;-1/3;4;-10/3;23;-7}
mà n là số nguyên
nên n∈{0;1;4;-7}
c: \(\frac{3n+2}{4n-5}\) là số tự nhiên
=>\(\begin{cases}3n+2\vdots4n-5\\ \frac{3n+2}{4n-5}\ge0\end{cases}\Rightarrow\begin{cases}12n+8\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>\(\begin{cases}12n-15+23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>\(\begin{cases}4n-5\in\left\lbrace1;-1;23;-23\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n<=-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}n\in\left\lbrace\frac12;1;7;-\frac92\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>n=7
B2:Tìm các số nguyên n sao cho biểu thức sau nguyên
A=3n+2/n-1
B=3n+1/3n-1
Tìm số nguyên sao cho
n+3/n+2 là số nguyên âm
n+7/3n-1 là số nguyên
3n+2/3n-5 là số tự nhiên
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
| 3n - 5 | 1 | 7 |
| 3n | 6 | 12 |
| n | 2 tm | 4 tm |
Tìm n là số nguyên sao cho:
\(n^2\)+3n-1⋮n+2
=>n^2+2n+n+2-3 chia hết cho n+2
=>\(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
a)Tìm các số nguyên n sao cho n+2 là ước của n+7
b)Tìm các số nguyên n sao cho n+1 là bội của n-7
c) Tìm các số nguyên n để 3n-1 là bội của n-2
a Tìm số nguyên n sao cho n 2 chia hết cho n 3b Tìm tất cả các số nguyên n biết 6n 1 chia hết cho 3n 1
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0
3. tìm số nguyên n sao cho
a) n+3/ n -2 là số nguyên
b) n+7/ 3n -1 là số nguyên
c)3n+2/ 4n-5 là số nguyên
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
| n -2 | 1 | -1 | -5 | 5 |
| n | 3 | 1 | -3 | 7 |
tìm số nguyên n sao cho 3n-1 chia hết cho n+2
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)