tam giác ABC cân tại A. E thuộc BC F thuộc AC dao cho EBC =60 FCB = 50 tính BEF
Cho tam giác ABC cân tại A có hai đường phân giác BE và CD (E thuộc AC, D thuộc AB)
a) Chứng minh góc EBC=góc DCB và tam giác DBC= tam giác ECB
b) Qua E vẽ đường thẳng song song với CD cắt tia BC tại điểm F. Chứng minh tam giác BEF cân tại E
c) Chứng minh tam giác DCE= tam giác FEC và BC+DE<2BE.
Giúp mình nha cảm ơn ,mai mình phải nộp bài rồi!
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E
Cho tam giác ABC cân tại A có hai đường phân giác BE và CD (E thuộc AC, D thuộc AB)
a) Chứng minh góc EBC=góc DCB và tam giác DBC= tam giác ECB
b) Qua E vẽ đường thẳng song song với CD cắt tia BC tại điểm F. Chứng minh tam giác BEF cân tại E
c) Chứng minh tam giác DCE= tam giác FEC và BC+DE<2BE.
Giúp mình nha cảm ơn ,mai mình phải nộp bài rồi!
Cho tam giác ABC cân tại A.Trên AB lấy điểm E bất kỳ.Qua E dựng EF // Ac (F thuộc BC).Chứng minh tam giác BEF cân
Cho hình tam giác ABC có BAC bằng 50 độ,ABC bằng 70 độ.Gọi BE là tia phân giác của ABC (e thuộc AC).Từ E kẻ EF//AB(F thuộc BC).Từ F kẻ tia phân giác FH của EFC(H thuộc BC).
a,Tính BEF và CEF
b,Qua F kẻ đường thẳng d vuông góc với BE cắt AB tại K.Tính BFK
B1, cho tam giác abc cân tại a trên ab lấy điểm e, trên ac lấy điểm f sao cho ae = af chứng minh A) tam giác aec =tam giác afb B) tam giác ebc = tam giác fcb
a: Xét ΔAEC và ΔAFB có
AE=AF
góc EAC chung
AC=AB
=>ΔAEC=ΔAFB
b: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
góc EBC=góc FCB
BC chung
=>ΔEBC=ΔFCB
Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF
Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF
-Làm 1 tỷ lần dạng này rồi ;-; .
a.-\(\widehat{BEO}=180^0-\widehat{OBE}-\widehat{EOB}=180^0-\widehat{EOF}-\widehat{EOB}=\widehat{COF}\).
-△OBE và △FCO có: \(\widehat{BEO}=\widehat{COF};\widehat{OBE}=\widehat{FCO}=60^0\)
\(\Rightarrow\)△OBE∼△FCO (g-g).
\(\Rightarrow\dfrac{OB}{FC}=\dfrac{BE}{CO}\Rightarrow OB.OC=BE.CF\Rightarrow\dfrac{1}{2}BC.\dfrac{1}{2}BC=BE.CF\Rightarrow BC^2=4BE.CF\)
b. △OBE∼△FCO \(\Rightarrow\dfrac{OE}{OF}=\dfrac{BE}{CO}\Rightarrow\dfrac{OE}{OF}=\dfrac{BE}{OB}\Rightarrow\dfrac{BE}{OE}=\dfrac{OB}{OF}\)
-△OBE và △FOE có: \(\widehat{OBE}=\widehat{FOE}=60^0;\dfrac{BE}{OE}=\dfrac{OB}{OF}\)
\(\Rightarrow\)△OBE∼△FOE (c-g-c).
\(\Rightarrow\widehat{BEO}=\widehat{OEF}\) nên EO là tia phân giác góc BEF.
Cho tam giác ABC cân tại A có BE và CD là các đường phân giác của góc B và góc C ( E thuộc AC , D thuộc AB )
a) chứng minh góc DCB = góc ECB. Từ đó suy ra tam giác DBC = tam giác ECB
b) Qua E vẽ đường thẳng song song với CD cắt BC tại F. Chứng minh tam giác BEF cân.
a,Vì BE là tia phân giác góc B nên
\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\)
Vì CD là tia phân góc góc C nên
\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\)
mà góc B = góc C ( vì tam giác ABC cân tại A )
\(\Rightarrow\)góc ABE = góc EBC = góc ACD = góc DCB
Vậy góc EBC = góc DCB
*Xét tam giác DBC và tam giác ECB có
góc DCB = góc EBC ( theo chứng minh trên )
cạnh BC chung
góc DBC = góc ECB ( tam giác ABC cân )
Do đó : tam giác DBC = tam giác ECB ( g.c.g )
b,Vì EF // CD
\(\Rightarrow\)góc EFB = góc DCB
mà góc DCB = góc EBC ( theo câu a )
\(\Rightarrow\)góc EFB = góc EBC hay góc EFB = góc EBF
Vậy tam giác BEF là tam giác cân tại E
Học tốt
câu a ý \(\widehat{DCB}\ne\widehat{ECB}\)NHA PHẢI LÀ CHỨNG MInH \(\widehat{DCB}=\widehat{EBC}\)MỚI ĐÚNG PẠN GHI NHẦM THÌ PHẢI
A)
VÌ \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ BE LÀ PHÂN GIÁC CỦA \(\widehat{B}\)
\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\left(1\right)\)
TA CÓ CD LÀ PHÂN GIÁC CỦA \(\widehat{C}\)
\(\Rightarrow\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\left(2\right)\)
CÓ (1) VÀ (2) MÀ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\widehat{ACD}=\widehat{DCB}\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\left(ĐPCM\right)\)
XÉT \(\Delta DBC\)VÀ\(\Delta ECB\)CÓ
\(\widehat{ABC}=\widehat{ACB}\) HAY \(\widehat{DBC}=\widehat{ECB}\)
BC LÀ CẠNH CHUNG
\(\widehat{DCB}=\widehat{EBC}\left(CMT\right)\)
=>\(\Delta DBC\)=\(\Delta ECB\)(G-C-G) (ĐPCM)
B) VÌ \(AF//DC\)
\(\Rightarrow\widehat{F_1}=\widehat{C_2}\left(ĐV\right)\)
MÀ \(\widehat{EBC}=\widehat{DCB}\)HAY\(\widehat{EBC}=\widehat{C_2}\)
\(\Rightarrow\widehat{F_1}=\widehat{EBC}\)( BẮC CẦU )
HAY \(\widehat{F_1}=\widehat{EBF}\)
=> \(\Delta BEF\)CÂN TẠI E ( ĐPCM)
Mọi người giúp em với.
1. Cho tam giác ABC cân tại A và có góc A bằng 50°.
a) Tính góc B và góc C.
b) Lấy D thuộc AB, E thuộc AC sao cho AD bằng AE. Chứng minh DE song song BC.
2.Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD bằng AE.
a) Chứng minh DB bằng EC.
b) Gọi O là giao điểm của BD và EC. Chứng minh tam giác OBC và tam giác ODE là tam giác CÂN.
c) Chứng minh DE song song BC.
3. Cho tam giác ABC vuông tại A có góc B bằng 60°. Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE bằng CA ( CE,CA nằm cùng phía đối BC ). Trên tia đối BC lấy F sao cho BF bằng BA. Chứng minh :
a) Tam giác ACE đều.
b) A,E,F thẳng hàng ( Góc AEF bằng 180° ).
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng