Rút gọn :\(A=√(13+√2+5√(1+√2)) +√(13+√2-5√(1+√2)) \)
Rút Gọn:
\(A=\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
\(\sqrt{2}A=\sqrt{2}\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{2}\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{26+2\sqrt{2}+5.2\sqrt{1+2\sqrt{2}}}+\sqrt{26+2\sqrt{2}-5.2\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{5^2+2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}+\sqrt{5^2-2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}\)
\(=\sqrt{\left(\sqrt{1+2\sqrt{2}}+5\right)^2}+\sqrt{\left(\sqrt{1+2\sqrt{2}}-5\right)^2}\)
\(=\left|\sqrt{1+2\sqrt{2}}+5\right|+\left|\sqrt{1+2\sqrt{2}}-5\right|\)
\(=\sqrt{1+2\sqrt{2}}+5+5-\sqrt{1+2\sqrt{2}}=10\)
=> \(A=\frac{10}{\sqrt{2}}=5\sqrt{2}\)
Rút gọn: A= \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
A>0
\(A^2=26+2\sqrt{2}+2\sqrt{\left(13+\sqrt{2}\right)^2-25\left(1+2\sqrt{2}\right)}\)
\(=26+2\sqrt{2}+2\sqrt{171+26\sqrt{2}-25-50\sqrt{2}}\)
\(=26+2\sqrt{2}+2.\sqrt{144-2.12\sqrt{2}+2}\)
\(=26+2\sqrt{2}+2.\left(12-\sqrt{2}\right)\)
\(=50\)
\(A=\sqrt{50}=5\sqrt{2}\)
tham khảo câu hỏi tương tự nha bạn
\(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
(rút gọn bt)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Bài 1:Rút gọn các phân số sau
a, A = 2.84.272+44.69/ 27.67+27.40.94
b,B = (2/3)3.(-3/4)2 - (-1)5 / (2/5)2.(-5/13)3
Giúp với ạ mình cần gấp
a: \(A=\dfrac{2\cdot8^4\cdot27^2+44\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot11\cdot2^9\cdot3^9}{2^7\cdot3^7\cdot2^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9\cdot11}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\cdot11\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2\cdot301}{3\cdot31}=\dfrac{602}{93}\)
Rút gọn biểu thức P = a 3 - 1 3 + 1 a 4 - 5 . a 5 - 2 (với a > 0 v à a ≠ 1 )
A. P = 1
B. P = a
C. P = 2
D. P = a 2
a)Tìm x biết: x(x+10)-x-10=0
b)Rút gọn và tính giá trị biểu thức tại x=1/13; A=(x-1)(x^2+x+1)-(x+5)(x^2-3)-5(x+1)^2
a: =>(x+10)(x-1)=0
=>x=-10 hoặc x=1
b: \(A=x^3-1-\left(x+5\right)\left(x^2-3\right)-5x^2-10x-5\)
\(=x^3-5x^2-10x-6-x^3+3x-5x^2+15\)
=-7x+9
=110/13
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
Rút gọn biểu thức 13 mũ 5 * 17 mũ 3 * a mũ 9 * ( 13 * 17 mũ 2 * a mũ 3 )
135.173.a9.(13.172.a3)
= 135.173.13.172.a9.a3
= (135.13).(173.172).(a9.a3)
= 136.175.a12
Tính rồi rút gọn(nếu có thể):
a/ ( 2 - 2/17 ) x 51/64
b/ ( 2/5 + 5/7 ) x 5/13
c/ 13/18 : ( 7/12 - 4/9 )