9 Chứng minh rằng PT sau có nghiệm với mọi m
x^2-(3m^2-5m+1)x-(m^2-4m+5)=0
Cho pt:
2x2 + mx + m - 3 = 0
Chứng minh rằng pt có 2 nghiệm phân biệt
Cho pt:
x2 - 2(2m-1)x + 3m2 - 4 = 0
Chứng minh rằng pt luôn có nghiệm với mọi m
Tìm m để x12 + x22 - x1x2 = 5
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
Cho phương trình : mx2 - (4m - 2)x + 3m - 2 =0 (1)
a) Chứng minh phương trình (1) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để pt (1) có các nghiệm là nghiệm nguyên.
cho pt: \(x^2-\left(m-2\right)x-m^2+3m-4=0\) (m là tham số)
chứng minh rằng phương trình có 2 nghiệm phân biệt với mọi m
Ta có: \(a.c=1.\left(-m^2+3m-4\right)< 0\)
Do a và c trái dấu
⇒ Phương trình có 2 nghiệm phân biệt với mọi m
Chứng minh phương trình sau có ít nhất 2 nghiệm phân biệt Với mọi m thuộc R. đặt f(x)=X^4+(m-2)x^3+x^3+(3m+1)x-4m-2016=0
Cho pt x^2 -(2m-3)x+m^2-3m=0
a)chứng minh rằng pt luôn có 2 nghiệm pb với mọi m
b)xác định giá trị của m để pt có hai nghiệm x1,x2 thỏa mãn :0<x1<x2<5
\(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb
Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-3-\sqrt{9}}{2}=m-3\\x_2=\frac{2m-3+\sqrt{9}}{2}=m\end{matrix}\right.\)
\(\Rightarrow0< m-3< m< 5\)
\(\Rightarrow3< m< 5\)
Cho pt x² - 2mx - 3m^2 + 4m - 2= 0
A / chứng minh pt có 2 nghiệm phân biệt với mọi m
B / tìm m để | x1 - x2 | đạt GTNN
cho pt: x2 -2(m-1)x-3m-1=0
a) tìm m để pt có nghiệm x1= -5 .tính x2
b) chứng tỏ pt luôn có nghiệm với mọi giá trị của m
Cho phương trình : x2 - 2. (m+1). x + m2 + 3m +2 =0 (1)
chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m ? Mình đang cần gấp cảm ơn bạn đã giúp
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1