39.Tìm m để phương trình y=(3sinx-4cosx)\(^2\)-6sinx+8cosx\(\ge\)2m-1 đúng với x\(\in\)R
Tìm m để các bất phương trình sau đúng với mọi x:
(3sinx – 4cosx)2 – 6sinx + 8cosx ≥ 2m - 1
A. m = 1
B. m > 1
C. m > 2
D. m ≤ 0
Đáp án D
Đặt t = 3sin x - 4cos x => -5 ≤ t ≤ 5 (dùng bất đẳng thức bunhiacopxki)
Ta có: y = (3sin x – 4cos x)2 – 6sin x + 8cos x
= t2 – 2t = (t – 2)2 -1
Do -5 ≤ t ≤ 5 => 0 ≤ (t – 2)2 ≤ 36 => min y = -1
Suy ra yêu cầu bài toán -1 ≥ 2m - 1 ⇔ m ≤ 0.
Tìm m để các bất phương trình ( 3 sin x - 4 cos x ) 2 - 6 sin x + 8 cos x ≥ 2 m - 1 đúng với mọi x ∈ ℝ
A. m> 0
B. m ≤ 0
C. m < 0
D. m ≤ 1
Xét hàm số y= ( 3sinx – 4cosx )2 – 6sinx + 8cosx
Đáp án B
tìm m để bất pt \(\left(3sinx-4cosx\right)^2-6sinx+8cosx\ge2m-1\) có nghiệm đúng với mọi x thuộc R
đặt \(3sinx-4cosx=t\) đk \(-5\le t\le5\) pt trên trở thành \(t^2-2t\ge2m-1\)
\(\left(t-1\right)^2\ge2m\Leftrightarrow m\le0\)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m}\) có tập xác định là R
Hàm xác định trên R khi và chỉ khi:
\(8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m\ge0;\forall x\) (1)
Đặt \(3sinx-4cosx=t\)
\(\Rightarrow t^2=\left(3sinx-4cosx\right)^2\le\left(3^2+\left(-4\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le t\le5\)
(1) tương đương:
\(-2t-t^2-2m\ge0;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le-t^2-2t;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le\min\limits_{t\in\left[-5;5\right]}\left(-t^2-2t\right)\)
Xét hàm \(f\left(t\right)=-t^2-2t\) trên \(\left[-5;5\right]\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-5\right)=-15\) ; \(f\left(-1\right)=1\) ; \(f\left(5\right)=-35\)
\(\Rightarrow2m\le-35\Rightarrow m\le-\dfrac{35}{2}\)
Tìm tất cả các giá trị của tham số m để hàm số sau chỉ nhận giá trị dương :
y = (3sinx - 4cosx)2 - 6sinx + 8cosx + 2m - 1
A. m = 1
B. m > 1
C. m > 2
D. m < 1
Đáp án B
Đặt t = 3sin x - 4 cos x => -5 ≤ t ≤ 5
Ta có: y = t2 – 2t + 2m – 1 = (t – 1)2 + 2m - 2
Với mọi t ta có (t – 1)2 ≥ 0 nên y ≥ 2m - 2 => min y = 2m - 2
Hàm số chỉ nhận giá trị dương ⇔ y > 0 ∀x ∈ R ⇔ min y > 0
⇔ 2m - 2 > 0 ⇔ m > 1
Có bao nhiêu giá trị nguyên của tham số \(m\le2019\) để bất phương trình : \(\left(3sinx-4cosx\right)^2-6sinx+8cosx\le2m-1\) đúng với mọi \(x\in R\)
A. 2012
B. 2014
C. 2018
D. 2016
Trình bày bài làm chi tiết rồi mới chọn đáp án nha các bạn .
\(\Leftrightarrow\left(3sinx-4cosx\right)^2-2\left(3sinx-4cosx\right)\le2m-1\)
Đặt \(3sinx-4cosx=5\left(\frac{3}{5}sinx-\frac{4}{5}cosx\right)=5sin\left(x-a\right)=t\)
\(\Rightarrow-5\le t\le5\)
BPT trở thành: \(t^2-2t+1\le2m\)
\(\Leftrightarrow\left(t-1\right)^2\le2m\)
Để pt nghiệm đúng với mọi x thì \(2m\ge\max\limits_{\left[-5;5\right]}\left(t-1\right)^2\)
Mà \(\left(t-1\right)^2\le\left(-5-1\right)^2=36\)
\(\Rightarrow2m\ge36\Rightarrow m\ge18\)
Có \(2019-18+1=2002\) giá trị
Không đáp án nào đúng
Tìm điều kiện của m để phương trình 3 sin x + 4 cos x = m có nghiệm.
Hình bên là đồ thị của hàm số y = x 3 - 3 x Sử dụng đồ thị đã cho, tìm tát cả các giá trị thực của tham số m để bất phương trình 8 sin 3 - 6 sin x ≤ m nghiệm đúng với mọi x thuộc R
A.
B.
C.
D.
Đáp án A
Đặt
Yều cẩu bào toán trở thành: Tìm m để bất phương trình nghiệm đúng với mọi
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
Cho hàm số y=f(x) có đồ thị như hình bên dưới.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f(3sinx + 4cosx) = f(m) có nghiệm?
A. 10
B. 14.
C. 9
D. 11.