Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Phúc
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Nguyễn Hồng Phúc
Xem chi tiết
Nguyễn Hồng Phúc
8 tháng 3 2022 lúc 9:13

Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 15:23

\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)

\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\) 

Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)

Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)

\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)

\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)

\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)

\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)

Trần Tiên Phong
Xem chi tiết
Mr Lazy
17 tháng 8 2016 lúc 16:36

\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(M\le\frac{1}{4}\left[\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{a+b}+\frac{ca}{b+c}\right]\)

\(=\frac{1}{4}\left[\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{a+b}\right]=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Lê Hoàng Tiến Đạt
16 tháng 8 2016 lúc 15:44

 chịu thôi chị ơi!

Ai trả lời câu này được bái luôn thành sư phụ!!!!!

Trần Tiên Phong
16 tháng 8 2016 lúc 15:55

cảm ơn nha, giờ chị giải được rồi 

Khanh Pham
Xem chi tiết
lớp 10a1 tổ 1
Xem chi tiết
hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 23:15

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

laughtpee
Xem chi tiết
Võ Thị Quỳnh Giang
15 tháng 11 2017 lúc 16:51

ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)

\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)

=> GTLN của P là 1 khi a=b=c

Sáng Đinh
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Hung nguyen
26 tháng 12 2017 lúc 15:18

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)