Phân tích đa thức thành nhân tử :
( a2 + a + 4 )2 + 8a ( a2 + a + 4 ) + 15a2
Phân tích đa thức thành nhân tử:
a ) x 2 + x y – x – y b ) a 2 – b 2 + 8 a + 16
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
Phân tích đa thức thành nhân tử:
a) 4abc-8ab2c
b)x2(2a-1)+x(1-2a)
c) 9a4(a-2)+a2(a-2)
d) (a-4)(2a-1)-8a+4
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
Phân tích đa thức sau thành nhân tử: a2 – b2 – 4a + 4
a2 – b2 – 4a + 4
= a2 – 4a + 4 – b2
= (a – 2)2 – b2
= (a – 2 + b)(a – 2 – b)
= (a + b – 2)(a – b – 2)
Phân tích đa thức thành nhân tử (tách 1 hạng tử thành nhiều hạng tử)
a) a4 + a2 + 11
b) a4 + a2 - 22
c) x4 + 4x2 - 5
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
Nếu sửa như bạn nói thì làm như sau:
a.
$a^4+a^2+1=(a^2+2a^2+1)-a^2=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)$
b.
$a^4+a^2-2=(a^4-1)+(a^2-1)=(a^2-1)(a^2+1)+(a^2-1)$
$=(a^2-1)(a^2+1+1)=(a-1)(a+1)(a^2+2)$
phân tích đa thức thành nhân tử: (a+b)(a2-b2)+(bc)(b2-c2)+(c+a)(c2-a2)
ta có :
Hãy phân tích các đa thức sau thành nhân tử :
a) a2 + ab – 7a – 7b
b) 5ab + 4c + 20b + ac
c) a2 + 6a – b2 + 9
d) a2 – 16
a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)
b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)
c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)
d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)
a2-b2-2x(a-b) phân tích đa thức thành nhân tử
\(a^2-b^2-2x\left(a-b\right)=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)=\left(a-b\right)\left(a+b-2x\right)\)
\(a^2-b^2-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2x\right)\)
Câu 19: Phân tích (a2+ 4)2 – 16a2 thành nhân tử ta được
A. (a –2)2(a + 2)2
B. (a + 2)4
C. (a2+ 4a + 4)(a2 – 2a + 1)
D. (a2+ 4)2
\(\left(a^2+4\right)^2-16a^2\\ =\left(a^2+4\right)^2-\left(4a\right)^2\\ =\left(a^2-4a+4\right)\left(a^2+4a+4\right)\\ =\left(a-2\right)^2\left(a+2\right)^2\)
Chọn A.
Bài 1: Phân tích đa thức thành nhân tử:
a) x2 + xy –x – y
b) a2 – b2 + 8a + 16
TK
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức:
a) ( 4x^2 -3x -18 )^2 - ( 4x^2 +3x)^2
b) [ 4abcd +( a2+ b2) ( c2 +d2) ]2 -4[ cd (a2 + b2) +ab (c2 + d2)]2