Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Hương
Xem chi tiết
Tô Hà Thu
1 tháng 9 2021 lúc 15:50

\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)

\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)

\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)

Tô Hà Thu
1 tháng 9 2021 lúc 16:08

\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)

\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)

\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)

\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 23:05

a: ta có: \(\left|-2x+\dfrac{3}{2}\right|=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x+\dfrac{3}{2}=\dfrac{1}{4}\\-2x+\dfrac{3}{2}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-\dfrac{5}{4}\\-2x=-\dfrac{7}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{7}{8}\end{matrix}\right.\)

b: Ta có: \(\dfrac{3}{2}-\left|\dfrac{5}{4}+3x\right|=\dfrac{1}{4}\)

\(\Leftrightarrow\left|3x+\dfrac{5}{4}\right|=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{5}{4}=\dfrac{5}{4}\\3x+\dfrac{5}{4}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=0\\3x=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{6}\end{matrix}\right.\)

Đỗ thuỳ an
Xem chi tiết
ILoveMath
16 tháng 11 2021 lúc 15:06

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

kiara- Hồ Hách Nhi
Xem chi tiết
Yeutoanhoc
11 tháng 7 2021 lúc 17:29

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

Akai Haruma
11 tháng 7 2021 lúc 17:29

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

Akai Haruma
11 tháng 7 2021 lúc 17:38

d.

$|2x+5|=|3x-7|$

\(\Leftrightarrow \left[\begin{matrix} 2x+5=3x-7\\ 2x+5=7-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=12\\ x=0,4\end{matrix}\right.\)

e.

$|2x+7|=x-1\Rightarrow x-1\geq 0\Leftrightarrow x\geq 1$
Với $x\geq 1$ thì $|2x+7|=2x+7$

Khi đó pt trở thành:
$2x+7=x-1$

$\Leftrightarrow x=-8< 1$ (vô lý)

Vậy pt vô nghiệm.

g.

$|x-2|+|2x-3|=2$

Nếu $x\geq 2$ thì pt trở thành:

$x-2+2x-3=2$

$\Leftrightarrow 3x-5=2$

$\Leftrightarrow x=\frac{7}{3}$ (thỏa mãn)

Nếu $\frac{3}{2}\leq x< 2$ thì pt trở thành:

$2-x+2x-3=2$

$\Leftrightarrow x=3$ (không thỏa mãn)

Nếu $x< \frac{3}{2}$ thì pt trở thành:

$2-x+3-2x=2$

$\Leftrightarrow 5-3x=2$

$\Leftrightarrow x=1$ (thỏa mãn)

Vậy..........

h.

Từ đề suy ra $x\geq \frac{-2}{3}$

$\Rightarrow |x+2|=x+2$

Nếu  $x\geq 1$ thì $|1-x|=x-1$. PT trở thành:

$x+2+x-1=3x+2$

$\Leftrightarrow 2x+1=3x+2$

$\Leftrightarrow x=-1$ (vô lý)

Nếu $\frac{-2}{3}\leq x< 1$ thì $|1-x|=1-x$. PT trở thành:
$x+2+1-x=3x+2$

$\Leftrightarrow 3=3x+2$

$\Leftrightarrow x=\frac{1}{3}$ (thỏa mãn)

 

Yến Nhi
Xem chi tiết
Monkey D. Luffy
30 tháng 10 2021 lúc 8:56

\(a,\Leftrightarrow x^3=\dfrac{20}{3}\Leftrightarrow x=\sqrt[3]{\dfrac{20}{3}}\\ b,\Leftrightarrow x-1=9\Leftrightarrow x=10\\ c,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow2x+1=5\Leftrightarrow x=2\\ e,\Leftrightarrow2x-4=4\Leftrightarrow x=4\)

Kiều Vũ Linh
30 tháng 10 2021 lúc 9:12

Câu a) xem lại đề giùm nhé em

b) \(\left(x-1\right)^3=9^3\)

\(x-1=9\)

\(x=10\)

Vậy \(x=10\)

c) \(\left(x-1\right)^2=25\)

\(x-1=5\) hoặc \(x-1=-5\)

\(x-1=5\)

\(x=6\)

\(x-1=-5\)

\(x=-4\)

Vậy \(x=-4\)\(x=6\)

d) \(\left(2x+1\right)^3=125\)

\(\left(2x+1\right)^3=5^3\)

\(2x+1=5\)

\(2x=4\)

\(x=2\)

Vậy \(x=2\)

e) Sửa đề: \(\left(2x+4\right)^3=64\)

\(\left(2x+4\right)^3=4^3\)

\(2x+4=4\)

\(2x=0\)

\(x=0\)

Vậy \(x=0\)

Phạm thị diệu linh
Xem chi tiết
Tran Le Khanh Linh
25 tháng 3 2020 lúc 10:45

1) \(2x\cdot\left(x-3\right)-5=3x\left(2x-5\right)-4x^2+40\)

\(\Leftrightarrow2x^2-6x-5=6x^2-15x-4x^2+40\)

\(\Leftrightarrow2x^2-6x-5=2x^2-15x+40\)

\(\Leftrightarrow2x^2-6x-5-2x^2+15x-40=0\)

\(\Leftrightarrow9x-45=0\)

<=> x=5

2) x(2x-1)-5(-7)2=2x2-2x+5

<=> 2x2-x-5.49=2x2-2x+5

<=> 2x2-x-245-2x2+2x-5=0

<=> x-250=0

<=> x=250

3) |a-2|=10

\(\Leftrightarrow\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-8\end{cases}}}\)

4) |x|=-5

=> Không tồn tại giá trị của x thỏa mãn vì |x| >=0 với mọi x thuộc Z

Khách vãng lai đã xóa
Trương Diệu Linh🖤🖤
Xem chi tiết
Akai Haruma
22 tháng 5 2021 lúc 1:52

a) 

$|3x-2|=2x\Rightarrow x\geq 0$.

Xét 2 TH:

TH1: $x\geq \frac{2}{3}$ thì pt trở thành:

$3x-2=2x\Leftrightarrow x=2$ (thỏa mãn)

TH2: $0\leq x< \frac{2}{3}$ thì pt trở thành:

$2-3x=2x\Leftrightarrow x=\frac{2}{5}$ (thỏa mãn)

b) 

PT $\Rightarrow x\geq 0$

$\Rightarrow |4+2x|=4+2x$. PT trở thành:

$4+2x=4x\Leftrightarrow x=2$ (thỏa mãn)

 

Akai Haruma
22 tháng 5 2021 lúc 1:54

c) 

Xét các TH sau:

TH1: $x\geq \frac{3}{2}$. Khi đó, pt trở thành:

$2x-3=-x+21$

$\Leftrightarrow x=8$ (thỏa mãn)

TH2: $x< \frac{3}{2}$. Khi đó, pt trở thành:

$3-2x=-x+21$

$\Leftrightarrow x=-18$ (thỏa mãn)

d) 

Từ PT suy ra $x-2\geq 0\Leftrightarrow x\geq 2(*)$

Khi đó: $|3x-1|=3x-1$. PT trở thành:
$3x-1=x-2$

$\Leftrightarrow 2x=-1<0\Rightarrow x<0$ (mâu thuẫn với $(*)$)

Vậy PT vô nghiệm.

Thảo nguyên Ngô
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 10 2021 lúc 7:07

\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)

\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)

\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)

\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)

Mai Loan
Xem chi tiết
Xem chi tiết
Koolboy-VN ꧁༺(ღT͢e͢a͢m͢ღ...
1 tháng 10 2021 lúc 20:18

AI làm giúp mik với !!

Khách vãng lai đã xóa