a) xy+xz-5x-5y
b) x+y-x^2-xy
c) x^2-xy-7x+7y
d) ax^2+cx^2-ay+ay^2-cy+cy^2
d)
phân tích đa thức thành nhân tử
a) xy+xz-5x-5y
b) x+y-x2-xy
c) x2-xy-7x+7y
d) ax2+cx2-ay+ay2-cy+cy2
a) sửa đề nha bn: xy + xz - 5z - 5y
\(xy+xz-5z-5y\)
\(=x\left(y+z\right)-5\left(z+y\right)\)
\(=\left(x-5\right)\left(y+z\right)\)
b) \(x+y-x^2-xy\)
\(=\left(x+y\right)-x\left(x+y\right)\)
\(=\left(1-x\right)\left(x+y\right)\)
c) \(x^2-xy-7x+7y\)
\(=x\left(x-y\right)-7\left(x-y\right)\)
\(=\left(x-7\right)\left(x-y\right)\)
d) \(ax^2+cx^2-ay+ay^2-cy+cy^2\)
\(=ax^2+cx^2-ay-cy+ay^2+cy^2\)
\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)
\(=\left(a+c\right)\left(x^2-y+y^2\right)\)
tìm x,y,z biết \(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{xz}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)(a,b,c là hằng số)
Bai1:
1) Tìm x;y;z biết; (xy+1)/9=(xz+2)/15=(yz+3)/27 và xy+xz+yz=11
2) Biết (bz-cy)/a= (cx-az)/b=(ay-bx)/c (a,b,c khong bang 0). Chung minh rang x/a=y/b=z/c
PHÂN TÍCH THÀNH NHÂN TỬ
X^2-X-Y^2-Y
X^2-2XY+Y^2-Z^2
5X-5Y+ax-ay
a^3-a^2x-ay+xy
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)
\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)
\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)
\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Giúp mk nha
Bài 1 : Phân tích đa thức thành nhân tử
a) x2-6x-y2+9
b) 25-4x2-4xy -y2
c) x2+2xy+y2- xz-yz
d) x2-4xy+4y2-z2+4tz-4t2
Bài 2 : Phân tích đa thức thành nhân tử
a) ax2+cx2-ay+ay2-cy+cy2
b) ax^2+ay^2-bx^2-by^2+b-a
c) ac^2-ad-bc^2+cd+bd-c^3
Bài 3 : Tìm x
a) x(x-5)-4x+20=0
b) x(x+6)-7x-42=0
c) x^3-5x^2+x-5=0
d) x^4-2x^3+10x2-20x=0
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)
Ta có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}.\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}.\)
\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)
\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)
Thay (2) vào (1) ta được:
\(\frac{xy}{ay+ay}=\frac{yz}{bz+bz}=\frac{xz}{cx+cx}\)
\(\Rightarrow\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right).\)
\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{1.\left(x^2+y^2+z^2\right)}{4.\left(a^2+b^2+c^2\right)}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\left(4\right).\)
Từ (3) và (4)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2a}=\frac{1}{4}\\\frac{y}{2b}=\frac{1}{4}\\\frac{z}{2c}=\frac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{4}.2a\\y=\frac{1}{4}.2b\\z=\frac{1}{4}.2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{matrix}\right.\)
Vậy \(x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\left(x,y,z\ne0\right);\left(a,b,c\ne0\right).\)
Chúc bạn học tốt!
Cho a,b,c là các số thực khác 0. Tìm các số thực x,y,z khác 0 thỏa mãn: \(\frac{xy}{ay+bx}=\frac{xz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Cho a,b,c là các số thực khác 0 . Tìm các số thức x,y,z khác 0 thỏa : \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}=\frac{\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)