Chứng minh A= 1111....11555....55 ( n chữ số 1; n-1 chữ số 5) là số chính phương
Cho so tu nhien A thoa man ;
A=1111......1111 ( 2n chữ số 1) + 444....444 (n chữ số 4) +1 Chứng minh A là số chính phương
Ta có
\(1111...11=\frac{10^{2n}-1}{9}\)
\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)
\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)
\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)
=> A là số chính phương
Chứng minh số : C=1111...15555..56 là số chính phương ( 1111...1 có n chữ số 1) ( 5555...5 có n-1 chữ số 5)
Cho A= 1111...111(2n chữ số 1)-2222..222(n chữ số 2). Chứng minh A là số chính phương.
Đặt 11......1 (n chữ số 1 ) =a ( a thuộc N )
=> 2222.....2(n chữ số 2) =2a
100....0(n chữ số 0) = 9a+1
=> 1111....1(2n chữ số 1) = a.(9a+1)+a
Khi đó : A = a.(9a+1)+a-2a = 9a^2+a+a-2a=9a^2 = (3a)^2 là số chính phương)
=> ĐPCM
Mình không hiểu luôn ak !!!!@@@
Tìm số tự nhiên n biết \(n^2\)=111..11555..55 +1 . 2012 cs 1, 2012 cs 5
Chứng minh các số sau là số chính phương:
a) A = 1111...1111 - 22...22
2n chữ số 1 và n chữ số 2
b) B = 22499...99100...09
n - 2 chữ số 9 và n chữ số 0
1. Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath
cho a= 8n+1111...111(n thuộc n* ; n chữ số 1). chứng minh a chia hết cho 9 ?
Ta thấy: 11...1 ( n chữ số 1) có tổng = n nên:
8n +n = n x ( 8+1 ) = n x 9 chia hết cho 9
Vậy A chia hết cho 9
Chứng minh rằng số A = 1/3(1111.....1111-3333...3330000...000) là lập phương của 1 số tự nhiên.
{trog đó có n chữ số 1, n chữ số 3, n chữ số 0}![]()
Chứng minh A chia hết cho 9
A= 1111.....1(n chữ số 1)-10n
để 11111....-10nchia hết cho 9 thì tổng các chữ số chia hết cho 9
=>1+1+1+1+....-10n=n-10n=9n\(⋮9\)
Chứng minh n^2+n+1 ko chia hết cho 5, ko chia hết cho 4
Mình đang cần gấp
cho A = 1111...1 (n chữ số 1 ) và b=10000...05 (n-1 chữ số 0) với n>1 Chứng minh ab+1 là số chính phương