Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bình Minh
Xem chi tiết
Kudo Shinichi
Xem chi tiết
alibaba nguyễn
28 tháng 12 2018 lúc 11:09

\(2y^2-x=2y-xy+3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)

tran thu phuong
7 tháng 10 2019 lúc 12:49

2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha

Chúc học tốt!

Nguyen Thi Thu Ha
Xem chi tiết
Nguyễn Hoàng Tiến
11 tháng 6 2016 lúc 12:51

\(x\left(1-y\right)+2y-3=0\)

\(x\left(1-y\right)+2y-2=1\)

\(x\left(1-y\right)+2\left(y-1\right)=1\)

\(\left(y-1\right)\left(2-x\right)=1\)

\(y-1;2-x\inƯ\left(1\right)\)

Khương Vũ Phương Anh
Xem chi tiết
Thắng  Hoàng
6 tháng 1 2018 lúc 15:49

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

Khương Vũ Phương Anh
6 tháng 1 2018 lúc 20:32

sorry @Thắng Hoàng mình nhầm đề, phải là

\(x^2y^2-xy=x^2+2y^2\)

Quyết Tâm Chiến Thắng
Xem chi tiết
Jimmy Kudo
Xem chi tiết
Jimmy Kudo
6 tháng 1 2016 lúc 21:10

chán quá! mai phải nộp bt cho cô rùi nhg ko biết lm!

Jimmy Kudo
7 tháng 1 2016 lúc 21:38

sao dùng đc! nhg thui tui giải đc bài này rùi! cảm ơn bn đã nhắc! :))

em ơi
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:57

Lời giải:

Ta có:

$6x^2y^3+3x^2-10y^3=-2$

$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$

$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$

Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.

Đến đây ta xét các TH:

TH1: $2y^3+1=-1; 3x^2-5=7$

TH2: $2y^3+1=1; 3x^2-5=-7$

TH3: $2y^3+1=-7; 3x^2-5=1$

TH4: $2y^3+1=7; 3x^2-5=-1$

Giải lần lượt các TH ta được $x=\pm 2; y=-1$

 

Sakura
Xem chi tiết
:vvv
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 9:03

\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)

Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương

\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

cherry moon
Xem chi tiết