Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Nguyen Tuan
Xem chi tiết
dbrby
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết
Võ Hồng Phúc
20 tháng 11 2019 lúc 22:23

Áp dụng BĐT AM - GM:

\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)

Tương tự ta CM được:

\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)

Cộng vế với vế 3 bất đẳng thức trên, ta được:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)

bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra

Khách vãng lai đã xóa
Nguyễn Việt Lâm
20 tháng 11 2019 lúc 22:23

\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)

Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng vế với vế:

\(VT\ge2\left(x^3+y^3+z^3\right)=2\)

Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.

BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)

Khách vãng lai đã xóa
Nguyễn Minh Chiến
8 tháng 11 2019 lúc 14:13
Khách vãng lai đã xóa
Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2020 lúc 17:54

Đặt vế trái là P

Ta có: \(P\ge\frac{x^2+1}{1+\frac{y^2+1}{2}+z^2}+\frac{y^2+1}{1+\frac{z^2+1}{2}+x^2}+\frac{z^2+1}{1+\frac{x^2+1}{2}+y^2}\)

Đặt \(\left(x^2+1;y^2+1;z^2+1\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge1\)

\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}=2\left(\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\right)\)

\(P\ge\frac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{6\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Thiều Khánh Vi
Xem chi tiết
Nguyễn Quang Định
15 tháng 10 2019 lúc 5:04

\(1+y+z^2\le1+\frac{1+y^2}{2}+z^2\)

\(\frac{1+x^2}{1+y+z^2}\ge\frac{2\left(1+x^2\right)}{1+b^2+2\left(1+c^2\right)}\)

Bất đẳng thức cần chứng minh tương đương

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

với \(a=1+x^2,b=1+y^2,c=1+z^2\)

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)

Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c=1\)

Lê Huỳnh
Xem chi tiết
Nguyễn Tuấn Anh
23 tháng 4 2016 lúc 16:00

Đề sai nha: Vì \(x^3+y^3+z^3=1\);

Vậy ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\)  Mà ta có: \(x\sqrt{1-x^2}\le\frac{x^2+1-x^2}{2}\) = \(\frac{1}{2}\) Dấu bằng xảy ra khi \(x=\sqrt{\frac{1}{2}}\)

Vậy \(\frac{x^2}{\sqrt{1-x^2}}\ge2x^3\)

Tương tự ta có: \(P=\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)\) mà \(x^3+y^3+z^3=1\) vậy \(P\ge2\)

Dấu bằng xảy ra khi: \(x=y=z=\sqrt{\frac{1}{2}}\)Nhưng khác với \(x^3+y^3+z^3=1\) Vậy đề bài sai. Chứng tỏ bài này là bài tự chế 
Đáng ra bài đúng là:
Cho \(x,y,z\) là ba số thực dương, thỏa mãn: \(x^2+y^2+z^2=1\)Chứng minh rằng: $=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}+\frac{z}{\sqrt{1-z^2}}\ge 2$

Nguyễn Thị Vân Anh
11 tháng 10 2017 lúc 20:38

\(x\sqrt{1-x^2}\ge\frac{x^2+1-x^2}{2}\) là BĐT nào vậy

Nguyễn Thị Vân Anh
11 tháng 10 2017 lúc 20:40
Xin looixtows lầm
Cố gắng hơn nữa
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2018 lúc 22:59

nhân VT ra rồi dùng cô si là ra 

Cố gắng hơn nữa
13 tháng 5 2018 lúc 23:08

ở nhở :v bị ngáo nhập :v

Cố gắng hơn nữa
14 tháng 5 2018 lúc 12:53

cơ mà hình như k được

Lê Huỳnh
Xem chi tiết
Võ Đông Anh Tuấn
23 tháng 4 2016 lúc 10:36

13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α

9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√  9ββ2x2+(1+x2)2

 S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2  x=25√

Dương Đức Hiệp
23 tháng 4 2016 lúc 10:39

13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α

9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√  9ββ2x2+(1+x2)2

 S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2  x=25√

 ๖ۣۜDevil
Xem chi tiết
An Trần
8 tháng 3 2019 lúc 15:12

\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)

Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)

Áp dụng bất đẳng thức AM-GM:

\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)

Tương tự:

\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)

\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Is it true?