Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{2011}=\frac{2011}{a}\) và \(a+b+c\ne-2011\). Tính \(a+b-c\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{2011}=\frac{2011}{a}\) và \(a+b+c\ne-2011\)
Tính\(a+b+c\)
Vì \(a+b+c\ne-2011\)
\(\Rightarrow a+b+c+2011\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2011}=\frac{2011}{a}=\frac{a+b+c+2011}{b+c+2011+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=c\)
\(\frac{b}{c}=1\Rightarrow b=c\)
\(\Rightarrow a=b=c\)
\(\frac{c}{2011}=1\Rightarrow c=2011\)
\(\Rightarrow a+b+c=2011+2011+2011=6033\)
Cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng \(\frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}=\frac{1}{a^{2011}+b^{2011}+c^{2011}}\)
Cho số A=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)
\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)
\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm
Thanks!!! Nhưng xin lỗi mặc dù phải là -1. Cảm ơn bạn
Cho số a=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
Giúp tui zới!!!!
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
\(\frac{a^{2011}+c^{2011}}{b^{2011}+d^{2011}}=\left(\frac{a+c}{b+d}\right)^{2011}\)
Cho \(\frac{2010\cdot c-2011\cdot b}{2009}=\frac{2011\cdot a-2009\cdot c}{2010}=\frac{2009\cdot b-2010\cdot c}{2011}\)
C/m \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
a/ Cho a,b,c thỏa mãn : a+b+c=0 và a^2+b^2+c^2=14
tính A khi A= a^4+b^4+c^4
b/ cho a,b,c khác 0. Tính D= x^2011+y^2011+z^2011
biết x,y,z thỏa mãn :\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Cho các số a,b,c,d khác 0 . Tính
T=x^2011+y^2011+z^2011+t^2011
Biết \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính P = x2010 + y2011 + z2012 + \(\frac{11}{2011}\)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)
\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)
\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)
vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)