Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
qwewe
Xem chi tiết
Minh Nguyen
8 tháng 8 2020 lúc 11:44

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại

Khách vãng lai đã xóa
Vuong Trinh Nhat
Xem chi tiết
Phương Phạm
Xem chi tiết
Nao Tomori
5 tháng 7 2016 lúc 12:52

a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)

              = -b^3+3ab^2a-3ba^2+a^3

             = (a-b)^3

b/ tương tự ta dùng hằng đẳng thức để chứng minh

Đinh Thùy Linh
5 tháng 7 2016 lúc 12:55

a) a - b = - (b - a) = (-1)*(b - a)

=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3

b) -(a + b) = (- a - b)

=> (-1)2 * (a + b)2 = (-a - b)2

=> (-a -b)2 = (a + b)2

EdogawaConan
Xem chi tiết
Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:50

a) (a-b)^3=-(b-a)^3

\(Taco:-\left(b-a\right)^3\)

=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:51

\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

\(a,\left(a-b\right)^3=-\left(b-a\right)^3\)

\(=-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a-b\right)^3\)

\(b,\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

Tran thuy quynh
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
IceAnh
4 tháng 10 2018 lúc 20:19

TUI CHOI NÈ

IceAnh
4 tháng 10 2018 lúc 20:21

TÚI CÓ DƯA HẤU, KC, MỘT ĐÀN BÒ, LỢN, GIÁP SẮT, VÀNG, NHÀ FARM MOB, BỂ BƠI+CÂU CÁ

Nguyễn Trung Dũng
Xem chi tiết
Lê Mạnh Triết Hưng
25 tháng 9 2018 lúc 20:02

KO ĐƯỢC ĐĂNG LINH TINH

Nguyễn Phương Uyên
25 tháng 9 2018 lúc 20:10

(a - b - c)3

= (a - b - c)(a - b - c)(a - b - c)

= a3 + ab2 + ac2 - ba2 - b3 - bc2 - ca2 - cb2 - c3

= (a3 - b3 - c3) + (ab2 - cb2) + (ac2 - bc2) - (ba2 + ca2)

= (a3 - b3 - c3) + b2(a - c) + c2(a - b) - a2(b + c)

tớ chịu rồi bn

Transformers
Xem chi tiết
Transformers
7 tháng 8 2016 lúc 17:12

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:26

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 17:35

Vì a+b+c=0

=> a+b=-c

=> (a+b)3= (-c)3

=> a3+b3+3ab(a+b) = (-c)3

=> a3+b3+c3= 3abc

Nguyễn Ngọc Linh Chi
Xem chi tiết

(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

=a3+b3+c3+3(a+b)(a+c)(b+c)

T.Ps
25 tháng 6 2019 lúc 8:56

#)Giải :

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b+c\right)^3\)

\(\Rightarrowđpcm\)