Cho\(\alpha\)là góc nhọn .Hãy chứng minh rằng: tan2-sin2\(\alpha\)=tan2\(\alpha\).sin2\(\)
chứng minh công thức nhân đôi
\(\sin2\alpha=2.\sin\alpha.\cos\alpha\)
\(\cos2\alpha=\cos^2\alpha-\sin^2\alpha\)
\(\tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha}\)
VỚI \(0\) ĐỘ \(< 45\) ĐỘ. CHỨNG MINH RẰNG
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(;\) \(\cos2\alpha=\cos^2\alpha\) \(-\sin^2\alpha;\) \(\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)
\(\dfrac{tan2\alpha}{tan4\alpha-tan2\alpha}=cos4\alpha\)
chứng minh cong thức lượng giavs
Lời giải:
\(\frac{\tan 2a}{\tan 4a-\tan 2a}=\frac{\tan 2a}{\frac{2\tan 2a}{1-\tan ^22a}-\tan 2a}=\frac{1}{\frac{2}{1-\tan ^22a}-1}=\frac{1-\tan ^22a}{1+\tan ^22a}\)
\(=\frac{1-\frac{\sin ^22a}{\cos ^22a}}{1+\frac{\sin ^22a}{\cos ^22a}}=\frac{\cos ^22a-\sin ^22a}{\sin ^22a+\cos ^22a}=\cos ^22a-\sin ^22a=\cos 4a\)
Ta có đpcm.
1/Đơn giản biểu thức:
a) Tan2α.(2 cos2α + sin2α -1)
b)(1 - cos α).(1 + cos α)
2/ Cho tam giác ABC có AB=6cm;AC=8cm;BC=10cm
a. Chứng minh tam giác ABC vuông
b. Tính góc B,góc C,đường cao AH
---------Giup mình nha-------------------
Câu 2:
a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Xét ΔBAC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
Chứng minh rằng khi góc \(\alpha\)nhọn thì :
a) \(\sin2\alpha=2\sin\alpha\cos\alpha\)
b) \(\cos2\alpha=1-2\sin^2\alpha\)
Chứng minh đẳng thức
a) \(\dfrac{1-sin2\alpha+cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\left(\dfrac{\pi}{4}-\alpha\right)\)
b) \(\dfrac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}=cot\alpha\)
\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)
\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)
\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Cho \(\alpha\)là góc nhọn
Chứng minh: \(\sin2\alpha=2\sin\alpha\cdot\cos\alpha\)
\(\cos2\alpha=1-2\sin^2\alpha\)
Nếu bn phải vẽ hình và chứng minh thì đây nhé
\(\Delta ABC\)vuông tại A, đường cao AH, trung tuyến AM. Đặt \(\widehat{C}=\alpha\), \(AH=h,\)\(AC=b,\)\(BC=a\)
\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}=\alpha\)
Vì \(\widehat{AMH}\)là góc ngoài của \(\Delta AMC\)\(\Rightarrow\widehat{AMH}=\widehat{MAC}+\widehat{C}=2\alpha\)
Ta có:
\(\sin\alpha=\sin C=\frac{AH}{AC}=\frac{h}{b}\) (1)
\(\cos\alpha=\cos C=\frac{AC}{BC}=\frac{b}{a}\) (2)
\(\sin2\alpha=\sin AMH=\frac{AH}{AM}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\) (3)
Từ (1) và (2) suy ra: \(2\sin\alpha\cdot\cos\alpha=2\cdot\frac{h}{b}\cdot\frac{b}{a}=\frac{2h}{a}\)(4)
Từ (3) và (4) suy ra đpcm. Câu dưới mình đang làm bạn chờ xíu nhé ^^
Nếu mình nhớ đúng thì công thức này lên lớp 10 mới học đúng không?
\(\sin2\alpha=\sin\left(\alpha+\alpha\right)=\sin\alpha\cos\alpha+\cos\alpha\sin\alpha=2\sin\alpha\cos\alpha\)
\(\cos2\alpha=\cos\left(\alpha+\alpha\right)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha=\left(1-\sin^2\alpha\right)-\sin^2\alpha\)
\(=1-2\sin^2\alpha\)
Dạ không chị ơi, em năm nay mới lên lớp 9 và phải làm theo cách vẽ hình rồi chứng minh ạ
Chứng minh rằng khi góc \(\alpha\) nhọn thì :
a) \(\sin2\alpha=2\sin\alpha\cos\alpha\)
b) \(\cos2\alpha=1-2\sin^2\alpha\)
a: \(\sin2a=\sin\left(a+a\right)\)
\(=\sin a\cdot\cos a+\cos a\cdot\sin a\)
\(=2\sin a\cdot\cos a\)
b: \(\cos2a=\cos^2a-\sin^2a\)
\(=1-\sin^2a-\sin^2a\)
\(=1-2\sin^2a\)
chứng minh:
\(\dfrac{1}{sin\alpha}+\dfrac{1}{sin2\alpha}+\dfrac{1}{sin4\alpha}+....+\dfrac{1}{sin2^n.\alpha}=\dfrac{cot\alpha}{2}-2cos2^n\alpha\)
Cho \(0< \alpha,\beta< \frac{\pi}{2}\)và \(\left\{{}\begin{matrix}3\sin^2\alpha+2\sin^2\beta=1\\3\sin2\alpha-2\sin2\beta=0\end{matrix}\right.\). Chứng minh rằng: \(\alpha+2\beta=\frac{\pi}{2}\).