\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{495}+\frac{1}{497}+\frac{1}{499}\)
tính \(\frac{1}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{7}+\sqrt{6}}+\frac{1}{\sqrt{8}+\sqrt{7}}+...+\frac{1}{\sqrt{500}+\sqrt{499}}\)
Tính tổng: \(S=\frac{1}{3}+\frac{1}{12}+\frac{1}{30}+\frac{1}{60}+\frac{1}{105}+\frac{1}{168}+\frac{1}{224}+\frac{1}{360}+\frac{1}{495}\)
Tính: \(S=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{90}{98}-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{495}+\frac{1}{500}}\)
Giúp mình nha! ^_^
Tử số sau 1/9 là 2/10.Tối nay mình thử làm xem
Quên mất, bảo tối hôm đó vào làm :)). May là sang nay có ng k ms vào xem. Sorry
S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)
=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)
Vậy S=40
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
So sánh các số hữa tỉ sau:
a) \(\frac{1}{2010}\)và \(\frac{-7}{19}\)
b) \(\frac{497}{-499}\)và \(\frac{-2345}{2341}\)
c) \(\frac{2000}{2001}\)và \(\frac{2001}{2002}\)
a) \(\frac{1}{2010}\)và \(\frac{-7}{19}\)
Ta có : \(\frac{1}{2010}>0>\frac{-7}{19}\)
\(\Rightarrow\frac{1}{2010}>\frac{-7}{19}\)
b)\(\frac{497}{-499}\)và \(\frac{-2345}{2341}\)
Ta có : \(\frac{497}{-499}< -1< \frac{-2345}{2341}\)
\(\Rightarrow\frac{497}{-499}>\frac{-2345}{2341}\)
c)\(\frac{2000}{2001}\)và \(\frac{2001}{2002}\)
Ta có : \(\frac{2000}{2001}=1-\frac{1}{2001};\frac{2001}{2002}=1-\frac{1}{2002}\)
mà \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
Cho \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+.......+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}....+\frac{1}{100}}\)
\(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+.....+\frac{1}{495}+\frac{1}{500}}\)
Tính M; N
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{499}{1000}\)là dạng bài gì?
Mình giải luôn ra nha
Tìm x:
1/3+1/6+1/10+.........+2/x.(x+1)=499/1000
1/2.(1/3+1/6+1/10+.......+2/x.(x+1)=499/1000.1/2
1/6+1/12+1/20+.......+1/x.(x+1)=499/2000
1/(2.3)+1/(3.4)+1/(4.5)+.........+1/x.(x+1)=499/2000
1/2-1/3+1/3-1/4+1/4-1/5+........+1/x-1/(x+1)=499/2000
1/2-1/(x+1)=499/2000
1/(x+1)=1/2-499/2000
1/(x+1)=501/2000
\Rightarrow1.2000=(x+1).501
\Rightarrow2000=x.501+501
\Rightarrow1499=x.501
\Rightarrowx=1499:501
Vì x thuộc Z nên 1499:501 là 1 số nguyên.Mà 1499:501 được 1 số thập phân nên x thuộc rỗng.
thực hiện phép tính :
a, \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{\frac{7}{6}-58+5+0,7}\)
b, \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
c, \(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
Mong các bạn giúp đỡ nhé
tính nhanh :
\(B=\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+\frac{1}{11\cdot15}+\frac{1}{15\cdot19}+\frac{1}{19\cdot23}+\frac{1}{23\cdot27}+\frac{1}{27\cdot31}+\frac{1}{31\cdot35}\)
\(A=\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr