Tính tổng
A=1+1/2+1/3+...+1/100
Tính tổng A= 1/3+1/3^2+...+1/3^100
Tính tổng A=1/3+1/3^2+1/3^3+...+1/3^100
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\) ( 1 )
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
Tính tổng A= 1/3 + 1/3^2 +1/3^3 + ...+1/3^100
Tính tổng 100-(1+1/2+1/3+1/4+...+1/100)/1/2+2/3+3/4+....+99/100
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
tính tổng: A=1/3^2+1/3^4+...+1/3^100
tính tổng A=1/3+1/3^2+1/3^3+1/3^4+...+1/3^100
\(\Rightarrow3.A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3.A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)
\(2.A=1-\frac{1}{3^{100}}=\frac{3^{100}-1}{3^{100}}\Rightarrow A=\frac{3^{100}-1}{2.3^{100}}\)
Bài 1: Tính tổng
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\\ \Leftrightarrow3A=3\left(+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ =1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
Lấy 3A - A ta được
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\
2A=1-\dfrac{1}{3^{100}}\\
\Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
Ta có: \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow2\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow2\cdot A=1-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow2\cdot A=\dfrac{3^{100}-1}{3^{100}}\)
\(\Leftrightarrow A=\dfrac{3^{100}-1}{2\cdot3^{100}}\)
Tính tổng A biết:
A= (-1)^1 x 1+ (-1)^2 x 2 + (-1)^3 x 3 + ... + (-1)^100 x 100
Tính tổng
A=1+1/2+1/3+...+1/100
câu này lớp chín không làm được thì chết mẹ đi sống làm gì
Lớp 9 ko bt giải bài này ạ!
A= ( 1+ 1/100 ) X100 :2
A= 101/100 X100 : 2
A= 101 : 2
A= 50,5
1. tính tổng A= 1/(1*2*3)+ 1(2*3*4) +1/(3*4*5) +........+ 1(98*99*100)
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}\cdot\frac{1}{4949}\)
\(A=\frac{1}{9898}\)