Áp dụng bất đẳng thức cauchy . Tìm GTLN
A = (3 + x)(5 - y) với 3 < x < 5
Áp dụng bất đẳng thức Cauchy tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5-2x+2y)+14
Giúp mình nha mọi người!!!
Áp dụng bất đẳng thức cô si để
a)) tìm GTNN của y=x^2 +2/X^3
b) TÌM GTLN của y= x^2/[(x^2+2)^3]
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
Giúp mình với!!! Bài này về bất đẳng thức Cauchy ak!!!
1. Cho x > 1 hãy tìm GTNN của:
P=\(\dfrac{x}{\sqrt{x}-1}\)
2. Tìm GTNN của:
B=\(\dfrac{x+15}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1,x\ne9\right)\)
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
2:
\(B=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}\)
\(=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
=>\(B>=2\cdot\sqrt{25}-6=4\)
Dấu = xảy ra khi (căn x+3)^2=25
=>căn x+3=5
=>căn x=2
=>x=4
tìm giá trị nhỏ nhất. áp dụng bất đẳng thức cô-si
\(\dfrac{x^2}{x+3}\) ;\(\dfrac{x^2}{x-2}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)
Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)
\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)
\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)
Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)
\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)
\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)
1/cho x>2014. Chứng minh bất đẳng thức sau:
\(\frac{\sqrt{x-2013}}{x+2}\) + \(\frac{\sqrt{x-2014}}{x}\)\(\le\)\(\frac{1}{2\sqrt{2015}}\)+\(\frac{1}{2\sqrt{2014}}\)(bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy)
2/cho x,y,z>0. chứng minh BĐT sau:
\(\frac{x}{2x+y+z}\)+\(\frac{y}{x+2y+z}\)+\(\frac{z}{x+y+2z}\)\(\le\) 3/4 (bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy)
các bạn giải thật kĩ giúp nha! nếu giải bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy không được thì suy nghĩ cách khác giúp mình nhé. Mình đang cần gấp. Thanhks
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
tìm Max
E = x + \(\sqrt{5-x^2}\) với -\(\sqrt{5}\) bé hơn hoặc bằng x bé hơn hoặc bằng \(\sqrt{5}\)
mn giúp mình cái này với bất đẳng thức bunhia cốp xki , mình cảm ơn ạ! ( mn nhớ giải thích trước khi áp dụng nhé)
bất đẳng thức cosy 2 số không âm
áp dụng bất đẳng thức: \(x^2+y^2\ge2\cdot\sqrt{x\cdot y}\)
1) \(\frac{\sqrt{5}}{x+\frac{5}{x}}\le\frac{1}{2}\)
Áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b. Tìm giá trị lớn nhất của M= 2/xy + 3/(x2+y2). với x, y dương và x+y=1.
\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)
\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
Bài 1: Tìm x
1) /x-1/+/x-2/+/x-3/=7
2) /x+1/+/x+2/=2x
3) /x+3/+/x-2/=1
Bài 2: Tìm x biết ( áp dụng bất đẳng thức )
1) /3x+1/+/3x-1/=2
2) 2/x-3/+/5-22/=11
Bài 3: Tìm x,y
1) /x-2007/+/y-2016/< hoặc=