2/3x=4/5y=5/6z và x+y+z=156
Tìm x,y, biết
a) 4x = 5y và 4y = 6z x - 2y + 3z = 5
b) 2x = 3z và 4z = 5y
3x +y - 2z = 3
c) 4x = 5y = 6z và x + 2y - z = 5
d) 2x = 5y -3z và 2x- 3y - z = 2
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
mọi người giúp mk câu b, c, d còn lại nha
Cho \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}\)Tính giá trị biểu thức \(A=\frac{3x+y-2z}{-3x-5y+6z}\)(Với x,y,z khác 0 và -3x-5y+6z khác 0)
Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\) \(\left(k\ne0\right)\)
\(\Rightarrow x=-5k;y=6k;z=-2k\)
\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)
Vậy \(A=\frac{5}{27}\).
x-1/5=y-2/3=z-2/2 và 3x-5y+6z=9
Đặt \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=k\)\(\Rightarrow\begin{cases}x=5k+1\\y=3k+2\\z=2k+2\end{cases}\)
Theo đề bài: 3x-5y+6z <=> 3(5k+1)-5(3k+2)+6(2k+2)=9
<=>15k+3-15k-10+12k+12=9
<=>12k+5=9
<=>12k=4
<=>k=\(\frac{4}{12}=\frac{1}{3}\)
=>\(\Rightarrow\begin{cases}x=5.\frac{1}{3}+1=\frac{8}{3}\\y=3.\frac{1}{3}+2=3\\z=2.\frac{1}{3}+2=\frac{8}{3}\end{cases}\)
Vậy ............
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\) = \(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\)
= \(\frac{3x-3-\left(5y-10\right)+6z-12}{15-15+12}\) = \(\frac{3x-3-5y+10+6x-12}{12}\)
= \(\frac{9-5}{12}\) = \(\frac{4}{12}\) = \(\frac{1}{3}\)
=> \(\left[\begin{array}{nghiempt}x-1=\frac{5}{3}\\y-2=1\\z-2=\frac{2}{3}\end{array}\right.\) => \(\left[\begin{array}{nghiempt}x=\frac{8}{3}\\y=3\\z=\frac{8}{3}\end{array}\right.\)
Vậy x = \(\frac{8}{3}\) ; y = 3 ; z = \(\frac{8}{3}\)
1. x/2=x/3;y/5=z/7 và x+y+z=92
2. x=y/2=z/3 và 4x-3y-2z=36
3. 2x=3y=5z và x+y-z=95
4. 2/3x=1/5y=5/6z và x-y+z=46
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
2.
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)
=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)
y=\(-\frac{9}{2}x2=-9\)
z=\(-\frac{9}{2}x3=-\frac{27}{2}\)
3. \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}\)
=> x=95/19x15=....
y=95/19x10=...
z=96/19x6=...
1) Tìm x,y biết:
a) 3x = 4y; 5y = 6z và x+y+z=1
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5};3x+4y+5z=1\)
1)
a) 3x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{6}\)( 1 )
5y = 6z \(\Rightarrow\frac{y}{6}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{8+6+5}=\frac{1}{19}\)
\(\Rightarrow x=\frac{8}{19};y=\frac{6}{19};z=\frac{5}{19}\)
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\Rightarrow\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}=\frac{\left(3x-3\right)+\left(4y-8\right)+\left(5z-15\right)}{9+16+25}=\frac{-25}{50}=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2};y=0;z=\frac{1}{2}\)
tìm x,y,z
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)và 3x-5y+6z=9
ta có: \(\frac{x-1}{5}\) = \(\frac{y-2}{3}\) = \(\frac{z-2}{2}\) => \(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) và 3x-5y+6z =9
Áp dụng t/c ..., ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) =\(\frac{\left(3x-5y+6z\right)+\left(-3+10-12\right)}{15-15+12}\) =\(\frac{4}{12}\)=\(\frac{1}{3}\)
\(\frac{x-1}{5}\) =\(\frac{1}{3}\) =>x-1=\(\frac{5}{3}\)=>x=\(\frac{8}{3}\)
\(\frac{y-2}{3}\) = \(\frac{1}{3}\)=>y-2=1 =>y=3
\(\frac{z-2}{2}\) =\(\frac{1}{3}\) =>z-2=\(\frac{2}{3}\) =>z=\(\frac{8}{3}\)
1tìm,y,z biết
a. x/3 = y/5 và xy=80
b. 3x=5y=6z và x-y=4
c. 1-x/4=-4/1-x
b) Theo đề ra, ta có:
\(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{6}\)
\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x-y}{10-6}=1\)
\(\Rightarrow x=1.10=10\)
\(\Rightarrow y=1.6\)
\(\Rightarrow z=1.5=5\)
2^x=144-2^x+3
x.(x^2)^5=x^5
(x-5)^2+ly^2-4l=0
(x-0,2)^10+(y+3,1)^20=0
3x=4y=6z và x^2+y^2=25
3x=2y ;7y=5z và x-y+z=32
x+1/x+5=x-1/x-3
x-1/2=y-3/4=z-5/6 và 2x+5y-3z=32
3x=5y=6z và x+y-z=22
Vì 3x = 5y = 6z
=> \(\frac{x}{5}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\)
\(=>\frac{x}{30}=\frac{y}{18};\frac{y}{18}=\frac{z}{15}\)
\(hay\)\(\frac{x}{30}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{30}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{30+18-15}=\frac{22}{33}=\frac{2}{3}\)
Do đó suy ra:
\(3x=\frac{2}{3}=>x=\frac{2}{9}\)
\(5y=\frac{2}{3}=>y=\frac{2}{15}\)
\(6z=\frac{2}{3}=>x=\frac{1}{9}\)
Vậy \(\left(x;y;z\right)\in\left\{\frac{2}{9};\frac{2}{15};\frac{1}{9}\right\}\)