PTDTTNT:
\(\text{a) }6a^4+7a^3-37a^2-8a+12\)
\(\text{b) }\left(x^2+4x+8\right)^2+3x^3+14x^2+24x\)
Giải phương trình \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x=0\)
Phan tich thanh nhan tu : \(6a^4+7a^3-37a^2-8a+12\)
\(6a^4+7a^3-37a^2-8a+12\)
\(=6a^4-12a^3+19a^3-38a^2+a^2-2a-6a+12\)
\(=6a^3\left(a-2\right)+19a^2\left(a-2\right)+a\left(a-2\right)-6\left(a-2\right)\)
\(=\left(a-2\right)\left(6a^3+19a^2+a-6\right)\)
Phân tích đa thức thành nhân tử \(6a^4+7a^3-37a^2-8a+12.\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Bạn hướng dẫn giúp yk rồi mình bấm cho
=6a4-12a3+19a3-38a2+a-2a-6a+12
=6a3(a-2)+19a2(a-2)+a(a-2)-6(a-2)
=(a-2)(6a3+19a2+a-6)
=(a-2)(6a3+18a2+a2+3a-2a-6)
=(a-2)(6a2(a+3)+a(a+3)-2(a+3)
=(a-2)(a+3)(6a2+a-2)
=(a-2)(a+3)(a-1/2)(a+2/3)
giải pt: \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x=0\)
ai làm nhanh nhất mình tick người đó trước nha
Phân tích thành nhân tử bằng cách đặt biến phụ
a,[x^2+x]^2+4x^2+4x-12
b,[x^2+4x+8]^2+3x^3+14x^2+24x
a: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
b: \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x\)
\(=\left(x^2+4x+8\right)^2+3x^3+12x^2+24x+2x^2\)
\(=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
phan tích nhan tử thanh nhan tử:
a)\(3x^2-12y^2\)
b)\(5xy^2-10xyt+5xt^2\)
c)\(x^3+3x^2+3x+1-27x^3\)
d)\(\text{a}^3x-\text{a}b+b-x\)
e)\(3x^2\left(\text{a}+b+c\right)+36xy\left(\text{a}+b+c\right)+108y^2\left(\text{a}+b+c\right)\)
f)\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\text{a}\left(c-\text{a}\right)\)
g)\(\left(\text{a}+b+c\right)^3-\text{a}^3-b^3-c^3\)
h)\(4\text{a}^2b^2-\left(\text{a}^2+b^2-c^2\right)^2\)
Tìm x: \(\left(15x^4+4x^3+11x^2+14x-8\right):\left(5x^2+3x-2\right)\)
sai đề rồi bạn ơi
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Tìm x biết
a,\(\left(\frac{4}{5}\right)^{2x+7}\text{=}\frac{625}{256}\)
b,\(\frac{7^{x+2}+7^{x+1}+7^x}{57}\text{=}\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
c,\(\left(4x-3\right)^4\text{=}\left(4x-3\right)^2\)
d,\(\frac{2x+3}{5x+2}\text{=}\frac{4x+5}{10x+2}\)
e,\(\frac{3x-1}{40-5x}\text{=}\frac{2x-3x}{5x-34}\)
f,\(\frac{15}{x-9}\text{=}\frac{20}{y-12}\text{=}\frac{40}{z-2x}\) và \(xy\text{=}1200\)
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5