Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Hương
Xem chi tiết
Sông Ngân
Xem chi tiết
Đặng Ngọc Quỳnh
20 tháng 8 2021 lúc 19:37

a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)

Khách vãng lai đã xóa
Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2020 lúc 22:37

1.

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)+sinx.cosx-1=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx-1\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=1\\sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\frac{1}{2}sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin2x=2\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
5 tháng 10 2020 lúc 22:41

2.

\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=cos2x\)

\(\Leftrightarrow cos2x=cos\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\frac{\pi}{3}+k2\pi\\2x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

3.

\(\Leftrightarrow\sqrt{3}cosx-3sinx=2sin5x-2sinx\)

\(\Leftrightarrow\sqrt{3}cosx-sinx=2sin5x\)

\(\Leftrightarrow-\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=sin5x\)

\(\Leftrightarrow sin5x=-sin\left(x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{3}-x+k2\pi\\5x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Minh Châu
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 8 2020 lúc 11:35

a/

\(\Leftrightarrow sinx+cosx-4sinx.cosx-1=0\)

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(\Rightarrow t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

Pt trở thành:

\(t-2\left(t^2-1\right)-1=0\)

\(\Leftrightarrow-2t^2+t+1=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)

Nguyễn Việt Lâm
15 tháng 8 2020 lúc 11:38

b/

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

Pt trở thành:

\(t+\frac{3}{2}\left(t^2-1\right)-1=0\)

\(\Leftrightarrow3t^2+2t-5=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=\frac{5}{3}>\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 8 2020 lúc 11:43

c/

\(\Leftrightarrow sinx+cosx-4sinx.cosx=\frac{1}{2}\)

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) với \(\left|t\right|\le\sqrt{2}\)

\(sinx.cosx=\frac{t^2-1}{2}\)

Pt trở thành:

\(t-2\left(t^2-1\right)=\frac{1}{2}\)

\(\Leftrightarrow-4t^2+2t+3=0\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{1+\sqrt{13}}{4}\\t=\frac{1-\sqrt{13}}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{1+\sqrt{13}}{4\sqrt{2}}\\sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{13}}{4\sqrt{2}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=arcsin\left(\frac{1+\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(\frac{1+\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=arcsin\left(\frac{1-\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(\frac{1-\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2018 lúc 16:04

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2018 lúc 7:09

Nguyễn Hà Chi
Xem chi tiết
Nguyễn Hà Chi
5 tháng 11 2019 lúc 16:10

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 8:34

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

Khách vãng lai đã xóa
Jung Il Won
Xem chi tiết
Nguyễn Nhật Minh
8 tháng 12 2015 lúc 17:35

 +\(\sin^2x+\cos^2x=1\Leftrightarrow\sin^2x+4\sin^2x=1\Rightarrow\sin^2x=\frac{1}{5}\)

=>Sinx.cosx=sinx.2sinx=2sin2x =2.1/5 = 2/5