Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGỌC HÂN
Xem chi tiết
Trần Đình Tuệ
Xem chi tiết
Phùng Minh Quân
31 tháng 7 2019 lúc 9:32

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

Phùng Minh Quân
31 tháng 7 2019 lúc 9:33

à nhầm, \(a=b=c=\frac{4}{3}\) nhé 

Hà Thị Thu Hương
Xem chi tiết
Trần Đức Thắng
14 tháng 6 2015 lúc 11:18

ĐK để phân thức XĐ : x khác 1 và x> 0

 Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)

  => \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)

=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)

B, Bạn tự làm ý B nhe

HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2

(+) với x-1 = 2 => x = 3

............................

Thanh Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:23

1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{2}{x-1}\)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:25

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Để A là số nguyên thì \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)

Herimone
Xem chi tiết
Akai Haruma
7 tháng 8 2021 lúc 18:56

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$

Vũ Thùy Linh
Xem chi tiết
Moon Light
15 tháng 8 2015 lúc 17:41

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A nguyên thì $ phải chia hết cho \(\sqrt{x}\)-3<=>\(\sqrt{x}\)-3 là Ư(4)

Mà Ư(4)={+-1;+-2;+-4}

Do x là số nguyên.Ta có bảng sau:

\(\sqrt{x}\)-31-12-24-4
x16(TM)4(TM)25(TM)1(TM)49(TM)(vô lí vì \(\sqrt{x}\)=-1)

Vậy x={16;4;25;1;49}

Xin Lỗi Bạn
15 tháng 8 2015 lúc 17:43

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A có giá trị nguyên thì:

\(1+\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau:

\(\sqrt{x}-3\) 1-1 2-2 4-4
\(\sqrt{x}\) 4 2 5

 1

7-1(loại)

 16 4 25 1 49 

Vậy x={1;4;16;25;4} thì A có giá trị nguyên

Doãn Khánh Ngọc
Xem chi tiết
HoàngMiner
Xem chi tiết
Ngoc Anhh
7 tháng 10 2018 lúc 21:02

Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)

\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)

HoàngMiner
7 tháng 10 2018 lúc 21:19

Đọc lại đề đi bạn ơi :v

Tiên Susi
Xem chi tiết
Đinh Đức Hùng
30 tháng 1 2017 lúc 10:04

\(M=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\left(\sqrt{a}+1\right)+5}{\sqrt{a}+1}=\frac{\sqrt{a}+1}{\sqrt{a}+1}+\frac{5}{\sqrt{a}+1}=1+\frac{5}{\sqrt{a}+1}\)

Để \(1+\frac{5}{\sqrt{a}+1}\) là số nguyên <=> \(\frac{5}{\sqrt{a}+1}\) là số nguyên

=> \(\sqrt{a}+1\) thuộc ước của 5 là - 5; - 1; 1 ; 5

Mà \(\sqrt{a}+1\) > 0 => \(\sqrt{a}+1\) = { 1 ; 5 }

\(\Rightarrow\sqrt{a}\) = { 0 ; 4 }

=> a = { 0; 16 }