Tìm GTLN của:
\(P=\sqrt{6-2\sqrt{x}-x}\)
Tìm GTLN của:
\(\sqrt{6-2\sqrt{x}-x}\)
ĐKXĐ: \(6-2\sqrt{x}-x\ge0\) (1)
Ta có:
\(6-2\sqrt{x}-x\)
\(=-\left(\sqrt{x}+1\right)^2+7\le7\forall x\ge0\)
Để bt đạt GTLN => \(-\left(\sqrt{x}+1\right)^2\) lớn nhất
\(\Rightarrow-\left(\sqrt{x}+1\right)^2=-1\) tại x=0
Vậy..
Tìm GTLN của Q= \(\sqrt{x-2}+\sqrt{6-x}\)
\(\left(x-2+6-x\right)2>=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\) the bdt bunhiacopxki
=>\(8>=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\)
=>\(2\sqrt{2}>=\left(\sqrt{x-2}+\sqrt{6-x}\right)\)
dau =xay ra khi \(\sqrt{x-2}=\sqrt{6-x}\)
=>x=4
Q max =\(2\sqrt{2}\)
Với x, y, z là các số thực không âm thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=6\)
Tìm GTLN của biểu thức: \(P=\sqrt{xy}+2\sqrt{yz}+3\sqrt{zx}\)
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
Tìm GTLN, GTNN của:
a) C=\(\sqrt{1-x}+\sqrt{1+x}\)
b) D=\(\sqrt{x-2}+\sqrt{6-x}\)
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
ĐKXĐ: x>=0; x<>1/4
Ta có: \(A=\frac{\sqrt{x}+1}{2\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\)
\(=\frac{\sqrt{x}+1}{2\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+6\sqrt{x}+2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+\sqrt{x}\left(2\sqrt{x}-1\right)-x-6\sqrt{x}-2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+4\sqrt{x}+3+2x-\sqrt{x}-x-6\sqrt{x}-2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2x-3\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
Ta có: P=A*B
\(=\frac{\sqrt{x}-1}{\sqrt{x}+3}\cdot\frac{\sqrt{x}+3}{x+8}=\frac{\sqrt{x}-1}{x+8}\)
=>\(\frac{1}{P}=\frac{x+8}{\sqrt{x}-1}=\frac{x-1+9}{\sqrt{x}-1}=\sqrt{x}+1+\frac{9}{\sqrt{x}-1}=\sqrt{x}-1+\frac{9}{\sqrt{x}-1}+2\ge2\cdot\sqrt{\left(\sqrt{x}-1\right)\cdot\frac{9}{\sqrt{x}-1}}+2=2\cdot3+2=8\forall x\) thỏa mãn ĐKXĐ
=>\(P\le\frac18\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left(\sqrt{x}-1\right)^2=9;\sqrt{x}-1>0\)
=>\(\sqrt{x}-1=3\)
=>\(\sqrt{x}=4\)
=>x=16(nhận)
tìm gtln,gtnn
E=11+\(\dfrac{6}{\sqrt{x}+3}\)
F=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)
Lời giải:
Ta thấy: $\sqrt{x}\geq 0$ với mọi $x\geq 0$
$\Leftrightarrow \sqrt{x}+3\geq 3$
$\Rightarrow E=11+\frac{6}{\sqrt{x}+3}\leq 11+\frac{6}{3}=13$
Vậy GTLN của $E$ là $13$. Giá trị này đạt tại $x=0$
$E$ không có giá trị nhỏ nhất.
------------------------
$F=\frac{\sqrt{x}+3-5}{\sqrt{x}+3}=1-\frac{5}{\sqrt{x}+3}$
Ở trên ta chỉ ra được: $\sqrt{x}+3\geq 3$
$\Rightarrow \frac{5}{\sqrt{x}+3}\leq \frac{5}{3}$
$\Rightarrow F=1-\frac{5}{3}\geq 1-\frac{5}{3}=-\frac{2}{3}$
Vậy $F_{\min}=\frac{-2}{3}$ tại $x=0$
Cho A=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-x}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tìm GTLN của A
Tìm GTLN,GTNN của bt sau: \(A=6\sqrt{x-2}+8\sqrt{5-x}\)
+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)
\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)
+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)
Vậy \(A_{min}=6\sqrt{3}\)khi x=5
+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)
+) Ta có: \(a^2+b^2=3\)
+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)
Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)
\(\Leftrightarrow x=3.08\)
Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08
Cho hai số x,y thỏa mãn x^+y^2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\). Tìm GTLN của Bt P=xy
x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
M=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\) ;N=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
c) Tìm x để P=\(\dfrac{M}{N}+1\) đạt GTLN
\(\dfrac{M}{N}=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) (ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))
\(=\left[\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)\(=\left[\dfrac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\left[\dfrac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{2}{\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{M}{N}+1=\dfrac{2}{\sqrt{x}+2}+1\)
Ta thấy: \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}+2\ge2\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}+1\le2\forall x\)
\(\Rightarrow Max_P=2\Leftrightarrow\dfrac{2}{\sqrt{x}+2}+1=2\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=1\)
\(\Leftrightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
#Urushi☕
Bạn tự rút gọn nha .
c) Ta có : \(P\text{=}\dfrac{M}{N}+1\text{=}\dfrac{2}{\sqrt{x}+2}+1\)
Để P có giá trị lớn nhất.
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}cóGTLN\)
\(\Leftrightarrow\sqrt{x}+2cóGTNN\)
Mà : \(\sqrt{x}+2\ge2\)
\(\Rightarrow\) Để : \(\left(\sqrt{x}+2\right)_{min}\) \(\Leftrightarrow\sqrt{x}\text{=}0\Leftrightarrow x\text{=}0\)
Vậy............