viết tổng thành tích
x2 + x - 6
x4 + x2 + 2x
4x2y2 - ( x2 + y2 - z2)2
x2 - y2 - z2 + 2yz - 2x + 1
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a, 3x(2x - y) + 5y(y - 2x)
b, (x - 5)2 - 9(x + y)2
c, y2 + 2yz + z2 - xy - xz
d, x2 - 9x2y2 + y2 + 2xy
e, x2 - 10x + 24
g, 6x2 + 7x - 5
h, x2 + 4xy - 12y2
k, a4 + 3a2 + 4
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
g) \(6x^2+7x-5\)
=\(6x^2+10x-3x-5\)
=\(\left(6x^2+10x\right)-\left(3x+5\right)\)
=\(2x\left(3x+5\right)-\left(3x+5\right)\)
=\(\left(2x-1\right)\left(3x+5\right)\)
phân tích đa thức thành nhân tử
1-2x+2yz+x2-y2-z2
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
\(x^2-2x+1-y^2+2yz-z^2\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
phân tích đa thức thành nhân tử
a, 4x2-9y2+6x-9y
b, 1-2x+2yz+x2-y2-z2
a) \(4x^2-9y^2+6x-9y\)
\(=\left(2x-3y\right)\left(2x+3y\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b) \(1-2x+2yz+x^2-y^2-z^2\)
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-y+z-1\right)\left(x+y-z-1\right)\)
Tick hộ mình nha 😘
Câu 1 (3,0 điểm): Tính
a) 3x2 (2x2 − 5x − 4)
b) (x + 1)2 + ( x − 2 )(x + 3 ) − 4x
c) (6 x5 y2 − 9 x4 y3 +12 x3 y4 ) : 3x3 y2
Câu 2 (4,0 điểm): Phân tích đa thức thành nhân tử
a) 7x2 +14xy b) 3x + 12 − (x2 + 4x)
c ) x2 − 2xy + y2 − z2 d) x2 − 2x −15
Câu 3 (0,5 điểm): Tìm x
a) 3x2 + 6x = 0 b) x (x − 1) + 2x − 2 = 0
Câu 4 (2,0 điểm): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh DE song song BF
b) Tứ giác DEBF là hình gì?
Câu 5 (0,5 điểm ):
Chứng minh rằng A= n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n ∈ N*
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
Bài 2
a) \(7x^2+14xy=7x\left(x+2y\right)\)
b) \(3x+12-\left(x^2+4x\right)=-x^2-x+12=\left(-x+3\right)\left(x+4\right)\)
c) \(x^2-2xy+y^2=\left(x-y\right)^2\)
d) \(x^2-2x-15=x^2+3x-5x-15=\left(x+3\right)\left(x-5\right)\)
a) 3x-3y+x2-y2
b) (2xy+1)^2-(2x+y)^2
c)(x2+y2-5)^2-4(x2y2+4xy+4) d) (x2+y2-z2)^2-4x2y2
e) 9x2 +90
x+225-(x-7)^2
bn viết rõ đề đi bn
Vd:x2 là 2.x hay x\(^2\)
Có nhiều chỗ vậy lắm bn ạ,bn viết lại đề đi rồi tụi mk giúp cho.
a) \(3x-3y+x^2-y^2\)
\(=3\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)
\(=\left(3+x+y\right)\left(x-y\right)\)
b) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left[\left(2xy+1\right)-\left(2x+y\right)\right]\left[\left(2xy+1\right)+\left(2x+y\right)\right]\)
\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)
\(=\left(y+1\right)\left(2x+1\right)\left(y-1\right)\left(2x-1\right)\)
c) \(\left(x^2+y^2-5\right)^2-4\left(x^2y^2+4xy+4\right)\)
↓
\(=\left(x^2-y^2-2y-1\right)\left(x^2-2xy+y^2-9\right)\)
\(=\left[x^2-\left(y^2+2y+1\right)\right]\left(x^2-2xy+y^2-9\right)\)
\(=\left[x^2-\left(y+1\right)^2\right]\left[\left(x-y\right)^2-3^2\right]\)
\(=\left[x^2-\left(-y-1\right)^2\right]\left(x-y+3\right)\left(x-y-3\right)\)
\(=\left(x+y+1\right)\left(x-y-1\right)\left(x-y+3\right)\left(x-y-3\right)\)
d) \(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-z^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)
\(=\left[\left(x-y\right)^2-z^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)
e)
- \(9x^2+90=9\left(x+10\right)\)
- \(x+225-\left(x-7\right)^2\)
\(=x+225-\left(x^2-14x+49\right)\)
\(=x+225-x^2+14x-49\)
\(=-x^2+15x+176\)
\(=-\left(x^2-15x-176\right)\)
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
phân tích đa thức thành nhân tử
a, 4x2-25-(2x-5) (2x+7)
b, x3 +27 +(x +3) (x-9)
c, 4x2y2 -(x2 + y2- z2)
\(a,4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
\(b,x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
=.= hok tốt!!
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
chứng minh với mọi hình thức : (x-y-z)2 = x2 + y2 + z2 - 2x + 2yz - 2zx
\(\left(x-y-z\right)^2\)
\(=\left\lbrack x-\left(y+z\right)\right\rbrack^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+z^2+2yz\)
\(=x^2+y^2+z^2-2xy-2xz+2yz\)