Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Phạm Tiến
Xem chi tiết
Phương An
23 tháng 10 2016 lúc 9:16

\(\frac{x-y}{x+2y}=\frac{3}{4}\)

4(x - y) = 3(x + 2y)

4x - 4y = 3x + 6y

4x - 3x = 6y + 4y

x = 10y

\(\frac{x}{y}=\frac{10}{1}\)

Trần Việt Linh
23 tháng 10 2016 lúc 9:17

\(\frac{x-y}{x+2y}=\frac{3}{4}\)

\(\Leftrightarrow4\left(x-y\right)=3\left(x+2y\right)\)

\(\Leftrightarrow4x-4y=3x+6y\)

\(\Leftrightarrow x=10y\)

\(\Leftrightarrow\frac{x}{y}=10\)

Nguyễn Huy Tú
23 tháng 10 2016 lúc 10:16

\(\frac{x-y}{x+2y}=\frac{3}{4}\)

\(\Rightarrow4\left(x-y\right)=3\left(x+2y\right)\)

\(\Rightarrow4x-4y=3x+6y\)

\(\Rightarrow4x-3x=6y+4y\)

\(\Rightarrow x=10y\)

\(\Rightarrow\frac{x}{y}=\frac{1}{10}\)

Vậy \(\frac{x}{y}=\frac{1}{10}\)

Nguyễn Mai Việt Yến
Xem chi tiết
Võ Đông Anh Tuấn
15 tháng 7 2016 lúc 20:32

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng dãy tỉ số bằng nhau :

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)

\(\Rightarrow x=2.5=10\)

\(\Rightarrow y=3.5=15\)

\(\Rightarrow z=4.5=20\)

Phan Thanh Tịnh
15 tháng 7 2016 lúc 20:33

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5

=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20

Trần Thị Thanh Lam
15 tháng 7 2016 lúc 20:38

Do x:2 = y:3 = z:4 =2y:6 =3z:12 =(x+2y+3z):(2+6+12)= -20:20= -1

=> x= -2 ,y= -3, z= -4

Nguyễn Chí Thành
Xem chi tiết
Phan Duy Thái_2007
6 tháng 11 2018 lúc 21:05

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

NĐM
Xem chi tiết
nguyễn tiến công
20 tháng 12 2019 lúc 17:44

ai trả lời đi

Khách vãng lai đã xóa

a) Ta có: \(\frac{x+2y}{22}=\frac{x-2y}{14}\Rightarrow\frac{x+2y}{x-2y}=\frac{22}{14}=\frac{11}{7}\)

\(\Rightarrow7\left(x+2y\right)=11\left(x-2y\right)\)

\(\Rightarrow7x+14y=11x-22y\)

\(\Rightarrow14y+22y=11x-7x\)

\(\Rightarrow36y=4x\Rightarrow\frac{x}{y}=\frac{36}{4}=9\)

b) Ta có: \(\frac{x}{y}=9\Rightarrow\frac{x}{9}=\frac{y}{1}\Rightarrow\frac{x^2}{81}=\frac{y^2}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{81}=\frac{y^2}{1}=\frac{x^2+y^2}{81+1}=\frac{82}{82}=1\)

\(\Rightarrow\frac{x^2}{81}=1\Rightarrow x^2=81\Rightarrow\orbr{\begin{cases}x=81\\x=-81\end{cases}}\)

     \(\frac{y^2}{1}=1\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

Vậy .................

Khách vãng lai đã xóa
mạc trần
Xem chi tiết
Fenny
Xem chi tiết
Nobi Nobita
21 tháng 10 2020 lúc 21:03

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy \(x=-3\)\(y=-4\)\(z=-5\)

e) \(x\left(x+y+z\right)=-12\)\(y\left(y+z+x\right)=18\)\(z\left(z+x+y\right)=30\)

\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)

\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)

TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\)\(y=\frac{18}{-6}=-3\)\(z=\frac{30}{-6}=-5\)

TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\)\(y=\frac{18}{6}=3\)\(z=\frac{30}{6}=5\)

Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\)\(\left(-2;3;5\right)\)

Khách vãng lai đã xóa
Cỏ dại
Xem chi tiết
Trà My
3 tháng 10 2017 lúc 14:35

Áp dụng t/c dãy tỉ số bằng nhau: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5

Đào Thị Thảo Nguyên
15 tháng 1 2019 lúc 21:07

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2

\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)

Vậy x=-3; y=-4; z=-9

Vậy x=-3;y=-4;z=-9

Shiro Suu
Xem chi tiết
Shiro Suu
4 tháng 8 2015 lúc 18:28

ai giải tiếp giúp mình với

Thúy Ngân
22 tháng 7 2017 lúc 10:47

Theo đề ta có : \(\frac{2y-x}{x+y}=\frac{2}{3}\)

\(\Rightarrow\left(2y-x\right)3=\left(x+y\right)2\)

\(\Rightarrow6y-3x=2x+2y\)

\(\Rightarrow6y-2y=2x+3x\)

\(\Rightarrow4y=5x\)

\(\Rightarrow\frac{x}{y}=\frac{4}{5}\)

Can you k for me,Shiro Suu!

Nguyễn Xuân Yến Nhi
Xem chi tiết
Nguyễn Huy Tú
29 tháng 9 2016 lúc 13:41

Đăng từng bài thôi chứ bạn

Họ Phạm
29 tháng 9 2016 lúc 15:57

mk lm nha

 

Nguyễn Thị Quỳnh Anh
18 tháng 1 2017 lúc 20:28

1.

a)Ta có: 3.x=y.7

3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau

suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)

7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau

suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)

(y khác 0 nên k khác 0)

vậy: x=2.k

y=5.k

(k thuộc tập hợp Z và k khác 0)