Tìm tỉ số \(\frac{x}{y}\), biết \(\frac{x-y}{x+2y}=\frac{3}{4}\)
tìm tỉ số \(\frac{x}{y}\)biết \(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
4(x - y) = 3(x + 2y)
4x - 4y = 3x + 6y
4x - 3x = 6y + 4y
x = 10y
\(\frac{x}{y}=\frac{10}{1}\)
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\Leftrightarrow4\left(x-y\right)=3\left(x+2y\right)\)
\(\Leftrightarrow4x-4y=3x+6y\)
\(\Leftrightarrow x=10y\)
\(\Leftrightarrow\frac{x}{y}=10\)
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\Rightarrow4\left(x-y\right)=3\left(x+2y\right)\)
\(\Rightarrow4x-4y=3x+6y\)
\(\Rightarrow4x-3x=6y+4y\)
\(\Rightarrow x=10y\)
\(\Rightarrow\frac{x}{y}=\frac{1}{10}\)
Vậy \(\frac{x}{y}=\frac{1}{10}\)
tìm 3 số biết x,y,z biết \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+2y-3z=-20
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)
\(\Rightarrow x=2.5=10\)
\(\Rightarrow y=3.5=15\)
\(\Rightarrow z=4.5=20\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5
=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20
Do x:2 = y:3 = z:4 =2y:6 =3z:12 =(x+2y+3z):(2+6+12)= -20:20= -1
=> x= -2 ,y= -3, z= -4
Tìm các số hữu tỉ x,y,z biết rằng \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và \(2y^2-\left(z+5\right)^2=-25\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Cho tỉ lệ thức : \(\frac{x+2y}{22}=\frac{x-2y}{14}\)
a) Tính tỉ số \(\frac{x}{y}\)
b) Tìm x, y biết \(x^2+y^2=82\)
ai trả lời đi
a) Ta có: \(\frac{x+2y}{22}=\frac{x-2y}{14}\Rightarrow\frac{x+2y}{x-2y}=\frac{22}{14}=\frac{11}{7}\)
\(\Rightarrow7\left(x+2y\right)=11\left(x-2y\right)\)
\(\Rightarrow7x+14y=11x-22y\)
\(\Rightarrow14y+22y=11x-7x\)
\(\Rightarrow36y=4x\Rightarrow\frac{x}{y}=\frac{36}{4}=9\)
b) Ta có: \(\frac{x}{y}=9\Rightarrow\frac{x}{9}=\frac{y}{1}\Rightarrow\frac{x^2}{81}=\frac{y^2}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{1}=\frac{x^2+y^2}{81+1}=\frac{82}{82}=1\)
\(\Rightarrow\frac{x^2}{81}=1\Rightarrow x^2=81\Rightarrow\orbr{\begin{cases}x=81\\x=-81\end{cases}}\)
\(\frac{y^2}{1}=1\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Vậy .................
Tìm x,y,x biết 2x,3y tỉ lệ thuận 3,4,3x và 4z tỉ lệ nghịch \(\frac{1}{2};\frac{2}{3}\)và\(\frac{3}{4}x-2y+\frac{1}{3}z\)=6
tìm các số hữu tỉ x, y , z
d)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z = -10
e) x (x + y + z) = -12; y (y + z + x ) = 18 ; z(z + x + y ) =30
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
Tìm các số hữu tỉ x, y, z:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(x-2y+3z=-10\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2
\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)
Vậy x=-3; y=-4; z=-9
Vậy x=-3;y=-4;z=-9
Tìm tỉ số \(\frac{x}{y}\) biết: \(\frac{2y-x}{x+y}=\frac{2}{3}\)
Theo đề ta có : \(\frac{2y-x}{x+y}=\frac{2}{3}\)
\(\Rightarrow\left(2y-x\right)3=\left(x+y\right)2\)
\(\Rightarrow6y-3x=2x+2y\)
\(\Rightarrow6y-2y=2x+3x\)
\(\Rightarrow4y=5x\)
\(\Rightarrow\frac{x}{y}=\frac{4}{5}\)
Can you k for me,Shiro Suu!
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)