Cho a+b+c=0
Tính p=a^2/a^2-b^2-c^2+b^2/b^2-c^2-a^2+c^2/c^2-a^2-b^2
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
cho a;b;c khác 0 và a+b+c=0 tính
\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/
Cho a,b,c khác 0 thỏa mãn a+b+c=0. Tính
\(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
Ta có \(a+b+c=0\)
=> \(a=-b-c\)
=> \(a^2=\left(b+c\right)^2\)
=> \(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2\)
\(=b^2+2bc+c^2-b^2-c^2\) \(=2bc\)
Tương tự : \(b^2-c^2-a^2=2ac\)
\(c^2-a^2-b^2=2ab\)
Thay vào A, ta có:
\(A=\frac{a^2}{2ab}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2ab}\)
Ta chứng minh được \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)
mà \(a+b+c=0\) => \(a^3+b^3+c^3-3abc=0\) => \(a^3+b^3+c^3=3abc\)
Lại thay vào A:
\(A=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy \(A=\frac{3}{2}\)
Cách chứng minh \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
Ta có \(a^3+b^3+c^3-3abc=\left(a^3+b^3\right)+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
= \(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)-3abc\right]\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
câu 5: cho a+b+c=0 và a,b,c khác 0 tính giá trị B= a^2 /(a^2 -b^2 -c^2) +b^2/(b^2 -c^2-a^2) + c^2/(c^2 -b^2 -a^2)
cách trình bày nữa ạ
câu 5: cho a+b+c=0 và a,b,c khác 0 tính giá trị B= a^2 /(a^2 -b^2 -c^2) +b^2/(b^2 -c^2-a^2) + c^2/(c^2 -b^2 -a^2)
cách trình bày nữa ạ
\(a+b+c=0\Rightarrow-a=b+c\Rightarrow a^2=b^2+c^2+2bc\Rightarrow b^2+c^2=a^2-2bc\)
Tương tự như vậy ta được: \(a^2+c^2=b^2-2ac;a^2+b^2=c^2-2ab\)
Suy ra: \(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(=\frac{a^2}{a^2-\left(a^2-2bc\right)}+\frac{b^2}{b^2-\left(b^2-2ac\right)}+\frac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2abc}\)
Ta lại thấy a+b=-c;b+c=-a;c+a=-b (a+b+c=0)
Vậy \(B=\frac{0^3-3.\left(-c\right)\left(-a\right)\left(-b\right)}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
cho a+b+c=0;abc #0.
Tính B=1/(b^2+c^2-a^2)+ 1/( a^2+c^2-b^2)+1/(a^2+b^2-c^2)
a+b+c=0 suy ra a+b=-c ; a+c=-b ; b+c=-a
bình phương hết lên ta có
a^2+b^2+2ab=c^2 ; a^2+c^2+2ac=b^2 ; b^2+c^2+2bc=a^2
suy ra a^2+b^2-c^2=-2ab ; a^2+c^2-b^2=-2ac ; b^2+c^2-a^2=-2bc
thay vào B=-1/2(1/ab+1/bc+1/ac)=-1/2(c/abc+a/abc+b/abc)=0 do abc khác 0 và a+b+c=0
Cho a + b + c = 0, abc khác 0. Tính giá trị biểu thức a^2/a^2-b^2-c^2 + b^2/b^2-c^2-a^2 + c^2/c^2-a^2-b^2
Cho a, b, c \(\ne0\) và a+b+c=0. Tính :
A= \(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Ta có: \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\Rightarrow a^2-2bc=b^2+c^2\)
\(\Rightarrow a^2-b^2-c^2=a^2-a^2+2bc=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Lại có: \(a+b+c=0\Rightarrow-a=b+c\)
\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)=3abc\left(b+c=-a\right)\)
=> \(A=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
a) cho \(a+b+c=2\).tính \(A=\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(a+c\right)^2}\)
b)cho \(a+b+c=0\).tính \(B=\frac{a^2+b^2+c^2}{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}\)
c) cho \(a+b+c=0;abc\ne0\)tính \(M=\frac{a^3}{b^2+c^2-a^2}+\frac{b^3}{c^2+a^2-b^2}+\frac{c^3}{a^2+b^2-c^2}\)
ý a bạn có chắc viết đề bài đúng không
Cho a +b+c=0 Tính P=\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
Ta có :
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
Mặt khác \(\left(b+c\right)^2=\left(-a\right)^2\Rightarrow b^3+3bc\left(b+c\right)+c^3=-a^3\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow P=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ba}=\frac{a^3+b^3+c^3}{2abc}\)
\(=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy P = 3/2
P=3/2