Phân tích thành nhân tử :
x3 + 4x2 - 11x + 6 .
Bài 3 : Phân tích đa thức thành nhân tử
a, x3 + 4x2 + 4x -xz2
b, x3 - 4x2 + 4x - 9y2
a: \(=x\left(x^2+4x+4-z^2\right)\)
\(=x\left(x+2-z\right)\left(x+2+z\right)\)
Bài 3 : Phân tích đa thức sau thành nhân tử
a, x3 + 4x2 + 4x -9y2
b, x3 - 4x2 + 4x - 9y2
Nguyễn Hoàng Minh
Phân tích đa thức thành nhân tử :
a.x4 - 4x3 + 11x2 - 16x + 16
b.x4 + 6x3 + 13x2 + 12x + 4
c.x4 + x3 - 4x2 + x + 1
d.x4 + x3 - 4x2 + x + 1
c: \(x^4+x^3-4x^2+x+1\)
\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)
1) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
Giúp vs
Phân tích đa thức sau thành nhân tử: x3 – 4x2 – 12x + 27
x3 – 4x2 – 12x + 27
(Nhóm để xuất hiện nhân tử chung)
= (x3 + 27) – (4x2 + 12x)
= (x3 + 33) – (4x2 + 12x)
(nhóm 1 là HĐT, nhóm 2 có 4x là nhân tử chung)
= (x + 3)(x2 – 3x + 9) – 4x(x + 3)
= (x + 3)(x2 – 3x + 9 – 4x)
= (x + 3)(x2 – 7x + 9)
Phân tích các đa thức sau thành nhân tử: a) x3 - 2x2 + x b) x2 – 2x – 15 c) 5x2y 3 – 25x3y 4 + 10x3y 3 d) 12x2y – 18xy2 – 30y2 e) 5(x-y) – y.( x – y) g)36 – 12x + x2 h) 4x2 + 12x + 9 i) 11x + 11y – x 2 – xy
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Phân tích các đa thức sau thành nhân tử:
a ) x 3 + 4 x 2 – 2 x – 8
a) x3 + 4x2 – 2x – 8
= (x3 + 4x2) - (2x + 8)
= x2(x + 4) - 2(x + 4)
= (x + 4)(x2 - 2)
= (x + 4)(x + √2)(x - √2)
phân tích đa thức thành nhân tử
a) 1+6x-6x2-x3
b) x3-4x2+8x-8
c) x3+2x2+2x+1
d) 8x3-12x2+6x-1
a) Ta có: \(1+6x-6x^2-x^3\)
\(=\left(1-x\right)\left(x^2+x+1\right)+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(x^2+7x+1\right)\)
b:Ta có: \(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
c: Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d: Ta có: \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
phân tích đa thức thành nhân tử :
a) x2 – y2 + 11x – 11y
b) x3 + x2y + yz2 - xyz + z3
\(a,=\left(x-y\right)\left(x+y\right)+11\left(x-y\right)=\left(x-y\right)\left(x+y+11\right)\\ b,=\left(x+z\right)\left(x^2-xz+z^2\right)+y\left(x^2+z^2-xz\right)\\ =\left(x^2-xz+z^2\right)\left(x+y+z\right)\)
a. x2 - y2 + 11x - 11y
= (x + y)(x - y) + 11(x - y)
= (x + y + 11)(x - y)
b. Mik ko hiểu đề lắm
Phân tích các đa thức sau thành nhân tử
a, 3xy2 – 6x2y
b, 3x – 3y + x2 – y2
c, x3 + 4x2 + 4x – xy2
d. Tìm x biết x3 – 4x = 0
\(a,=3xy\left(x-2y\right)\\ b,=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x+y+3\right)\left(x-y\right)\\ c,=x\left[\left(x+2\right)^2-y^2\right]=x\left(x+y+2\right)\left(x-y+2\right)\\ d,\Leftrightarrow x\left(x^2-4\right)=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)