Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rồng Xanh
Xem chi tiết
Nguyên Hoàng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 lúc 22:00

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)

\(\Leftrightarrow2\sqrt{2x-5}=10\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow2x-5=25\)

\(\Leftrightarrow x=15\)

Thanh Ha
Xem chi tiết
phan tuấn anh
22 tháng 6 2016 lúc 10:45

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)

nhân 2 vế với căn 2 ta có 

\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

<=>\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

<=>\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

đến đây bạn tự giải nốt nhé 

Thanh Ha
22 tháng 6 2016 lúc 9:26

minh viet thieu nha :trên là VP ,VT=\(2\sqrt{2}\)

Thanh Ha
23 tháng 6 2016 lúc 8:54

cam on ban nha

Tiến Vũ
Xem chi tiết
Minh Nguyễn Cao
15 tháng 5 2018 lúc 15:38

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

Kresol♪
Xem chi tiết
Tran Le Khanh Linh
7 tháng 10 2020 lúc 19:49

Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:

\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)

hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)

\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)

\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)

\(t+1+t+3=14\)

\(2t+4=14\)

2t=10

t=5

Từ đó \(x=\frac{25+5}{2}=15\)

Khách vãng lai đã xóa
Kresol♪
8 tháng 10 2020 lúc 16:03

có một chút thiếu sót và sai nha ! cảm ơn bnaj đã tả lời câu hỏi này !

Khách vãng lai đã xóa
Đinh Hoàng Nhất Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 15:27

=>|x^2+2|=x^2+2x+5

=>x^2+2=x^2+2x+5(Do x^2+2>=2>0 với mọi x)

=>2x+5=2

=>2x=-3

=>x=-3/2

HT.Phong (9A5)
3 tháng 9 2023 lúc 15:27

\(\sqrt{\left(x^2+2\right)^2}=x^2+2x+5\)

\(\Leftrightarrow\left|x^2+2\right|=x^2+2x+5\)  

Mà: \(x^2+2\ge2>0\forall x\)

\(\Leftrightarrow x^2+2=x^2+2x+5\)

\(\Leftrightarrow x^2-x^2+2x+5-2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

Nguyễn Thế Phúc Anh
Xem chi tiết
Nguyễn Thế Phúc Anh
20 tháng 7 2018 lúc 15:55

1 like tức thì nào

Phạm Tuấn Đạt
8 tháng 12 2019 lúc 23:20

\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)

\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)

\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)

Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)

Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)

\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)

Tự lm tiếp nha

Khách vãng lai đã xóa
Vương Tuấn Khải
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 3:44

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:

\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)

Theo Viet đảo, \(a^2;b^2\) là nghiệm của:

\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 4:10

2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(

b/ Đặt \(x=cos2t\) pt trở thành:

\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)

\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 4:29

c/ Đặt \(x=cost\)

\(64cos^6t-112cos^4t+56cos^2t-7=2\sqrt{1-cos^2t}\)

\(\Leftrightarrow64cos^6t-112cos^4t+56cos^2t-7=2sint\)

Nhận thấy \(cost=0\) không phải nghiệm, pt tương đương:

\(64cos^7t-112cos^5t+56cos^3t-7cost=2sint.cost\)

\(\Leftrightarrow cos7t=sin2t=cos\left(\frac{\pi}{2}-2t\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7t=\frac{\pi}{2}-2t+k2\pi\\7t=2t-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{18}+\frac{k2\pi}{9}\\t=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(\frac{\pi}{18}+\frac{k2\pi}{9}\right)\\x=\left(-\frac{\pi}{10}+\frac{k2\pi}{5}\right)\end{matrix}\right.\)

Ý tưởng của người ra đề khá kì quặc, công thức \(cos7a\) kia thực sự là chứng minh rất mất thời gian

Khách vãng lai đã xóa
Lê Bùi
Xem chi tiết
Hà Nam Phan Đình
9 tháng 12 2017 lúc 19:15

ĐK : \(x\ge\dfrac{-5}{2}\) PT tương đương

\(\Leftrightarrow\sqrt{2x+5}-3+\sqrt{x^2+5}-3=0\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x+5}+3}+\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+5}+3}=0\)

đến đây thì ez rồi