Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Quỳnh Trang
Xem chi tiết
Hồ Thu Giang
19 tháng 10 2016 lúc 14:01

a, \(A=1+2+2^2+2^3+...+2^{100}\)

=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)

=> \(A=2A-A=2^{101}-1\)

=> \(A+1=2^{101}\)

b, \(B=3+3^2+3^3+...+3^{2005}\)

\(3A=3^2+3^3+3^4+....+3^{2006}\)

=> \(2A=3A-A=3^{2006}-3\)

=> \(2A+3=3^{2006}\)là lũy thừa của 3

=> Đpcm

Ice Wings
19 tháng 10 2016 lúc 14:10

a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)

Lấy 2A-A ta có: 

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(\Rightarrow A+1=2^{101}-1+1\)

\(\Rightarrow A+1=2^{101}\)

b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)

\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)

\(\Rightarrow2B=3^{2006}-3\)

\(\Rightarrow2B+3=3^{2006}-3+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3         ĐPCM

Thành Trần
17 tháng 9 2021 lúc 18:17

9+8^2+8^3+...8^50

Khách vãng lai đã xóa
Trần Vinh
Xem chi tiết
doviethung
Xem chi tiết
Nguyễn Mạnh Tuấn
19 tháng 6 2016 lúc 14:13

A=3+32+34+......+399+3100

=>3A= 32+34+......+399+3100+3101

-A=3+32+34+......+399+3100

=>2A=3101-3

=>2A+3=3101

=>2A+3 là 1 lũy thừa của 3.(đpcm)

soyeon_Tiểu bàng giải
19 tháng 6 2016 lúc 14:15

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

2A = 3101 - 3

=> 2A + 3 = 3101

=> đpcm

Gia phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 19:01

a: \(A=4+2^2+2^3+...+2^{20}\)

=>\(2A=8+2^3+2^4+...+2^{21}\)

=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)

\(=2^{21}+8-2^2-4=2^{21}\)

=>\(A=2^{21}\) là lũy thừa của 2

b:

\(B=3+3^2+3^3+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(2B=3^{101}-3\)

=>\(2B+3=3^{101}\) là lũy thừa của 3

Trần Phương Uyên
Xem chi tiết
HT.Phong (9A5)
1 tháng 9 2023 lúc 9:17

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

HT.Phong (9A5)
1 tháng 9 2023 lúc 9:25

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

Hoàng Thanh
Xem chi tiết
Nguyen_Long
6 tháng 1 2019 lúc 16:20

Không biết 

Nguyễn Minh Anh
6 tháng 1 2019 lúc 16:24

mình ko biết vì mình mới lớp 4 .....

Kiệt Nguyễn
6 tháng 1 2019 lúc 16:28

\(A=2+2^2+2^3+...+2^{60}\)

\(\Leftrightarrow2A=2^2+2^3+2^4+...+2^{61}\)

\(\Leftrightarrow2A-A=2^{61}-2\)

\(\Leftrightarrow A+2=2^{61}-2+2\)

\(\Leftrightarrow A+2=2^{61}\left(đpcm\right)\)

Stella
Xem chi tiết
khongdiemquynh
9 tháng 9 2016 lúc 20:05

A= 1+2+22+23+....+250

2A=( 1+2+22+....+250 ).2

=2+22+23+...... +251

2A-A = ( 2+22+23+....+251) -( 1+2+25+23+.......+250)

= 251-1

=) 251-1+1 = 251 

h  nha

Sherlockichi Kazukosho
9 tháng 9 2016 lúc 20:05

\(A=1+2+2^2+2^3+.....+2^{50}\)

\(2A=2+2^2+2^3+2^4+.....+2^{50}\)

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)

\(A=2^{51}-1\)

Ta có 

A = 251 - 1

A + 1 = 251 - 1 + 1

=> A + 1 = 251

Điều phải chứng minh 

Phương Trình Hai Ẩn
9 tháng 9 2016 lúc 20:06

Ta có : 

 A = 20 + 2 + 22 + 23 + ... + 250

=> 2A=21+...+251

=> 2A-A=A=(21+...+251)-( 20 + 2 + 22 + 23 + ... + 250)

=> A=251-1

Ta có :

A+1=251+(1-1)

=> A+1=251

chính là luỹ thừa của 2

Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2022 lúc 22:31

1: \(3A=3^2+3^3+3^4+...+3^{2018}\)

\(\Leftrightarrow2A=3^{2018}-3\)

\(\Leftrightarrow2A+3=3^{2018}\) là lũy thừa của 3(ĐPCM)

2: \(2A+3=3^{2018}=\left(3^2\right)^{1009}=9^{1009}\) là lũy thừa của 9

Hạt Dẻ Kuri
Xem chi tiết
Pham Ngoc Anh
18 tháng 7 2017 lúc 9:04

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

Hạt Dẻ Kuri
18 tháng 7 2017 lúc 8:34

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

Anh Lê Vương Kim
18 tháng 7 2017 lúc 8:58

a) \(2^0+2^1+2^2+...+2^{2006}\)

= \(1+2+2^2+...+2^{2006}\)

Nhân A = 2 cho hai vế:

\(2A=2+2^2+2^3+...+2^{2007}\)

=> \(2A-A=\left(2+2^2+2^3+...+2^{2007}\right)-\left(1+2+2^2+2^{2006}\right)\)

=> \(A=2^{2007}-1\)