Tìm x
(3x+2)(x-1)(2x-5)<0
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a) \(7x^2=28\Leftrightarrow x^2=7\Leftrightarrow x=\sqrt{7}\)
c) \(\left(x-1\right)\left(x+\dfrac{5}{2}\right)=0\Leftrightarrow x\in\left\{1;\dfrac{-5}{2}\right\}\)
Tìm x
a, 3x\(^2\)-2x-1=0
b, \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
a. 3x2 - 2x - 1 = 0
<=> 3x2 - 3x + x - 1 = 0
<=> 3x(x - 1) + (x - 1) = 0
<=> (3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
b. \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
<=> \(\dfrac{20\left(x+1\right)}{60}+\dfrac{12\left(2x+3\right)}{60}=\dfrac{45}{60}\)
<=> 20x + 20 + 24x + 36 = 45
<=> 44x = -11
<=> x = \(-\dfrac{1}{4}\)
a) \(3x^2-2x-1=0\) \(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Pt\(\Rightarrow\)\(5\cdot4\left(x+1\right)+3\cdot4\cdot\left(2x+3\right)=3\cdot3\cdot5\)
\(\Leftrightarrow44x=-11\Rightarrow x=-\dfrac{1}{4}\)
Tìm x biết:
a) (3x³ + x² – 13x + 5) : (x² + 2x – 1) = 10
b) (x⁴ – 2x² – 8) : (x – 2) = 0
c) \(\dfrac{x^2-4x}{x^2-8x+16}\)= 0
b: \(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
Tìm X:
a) x.(2x+1) - x^2(x+2) + (x^3-x+3) = 3
b) 4.(x-6) - x^2(2+3x) + x(5x-4) + 3x(x-1) = 12x+12
c) (3x+1).(x-2) = (2-x) ( -3x-5)
d) (x+3).(x+5) - x.(x+7) = 2x+8
GIÚP MÌNH VỚI Ạ!!!
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )
Vậy phương trình nghiệm đúng với mọi x
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)
\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)
Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í
c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)
\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\)
d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)
b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)
\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)
Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm
c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)
\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)
d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)
Tìm x
a, 2x.(x-3)+3(x-3)=0
b, x(3x-1)-5(1-3x)=0
a) \(2x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
Bài 1: tìm đạo hàm của các hàm số sau
1. y=6x2 -\(\dfrac{4}{x}\)+1
2. y=\(\dfrac{2x+1}{-x+1}\)
3. y= \(\sqrt{x^2-3x+4}\)
4. y=\(\dfrac{\left(x^2-1\right)\left(x+3\right)}{x-4}\)
5. y=\(\dfrac{1}{2x^2-3x+5}\)
6. y=(x+1)\(\sqrt{x^2-1}\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
bài 1 tìm x
a) 12-2x-x^2=0
b) (x^2-1/2x):2x-(3x-1):(3x-1)=0
bài 2 tìm giá trị nhỏ nhất
N= x^2+5y^2+2xy-2y+2005
1) Thực hiện phép tính :
a) -(5x - 4)(2x+3)
b) ( x - y)( x + xy+ y)
c) 7x( x - 4) - ( 7x +3)(2x - x+4)
2) Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến x:
a) x(3x +12) - ( 7x - 20) + x(2x - 3) - x( 2x +5)
b) 3( 2x-1) - 5( x-3) + 6( 3x - 4) - 19x
3) tìm x:
a) 3x( x - 2) - x( 1+3x) = 14
b) (2x - 1)( x + 5) - (2x +1)( x + 4,5)=3,5
c) 3x - 3x( x - 3) = 36
d) (3x + 1)(x - 1) + x( 4 - 3x )= 5
Bài 3:
a: =>3x^2-6x-x-3x^2=14
=>-7x=14
=>x=-2
b: \(\Leftrightarrow2x^2+10x-x-5-2x^2-9x-x-4.5=3.5\)
=>-x-9,5=3,5
=>-x=12
=>x=-12
c: =>\(3x-3x^2+9x=36\)
=>-3x^2+12x-36=0
=>x^2-6x+12=0(loại)
d: \(\Leftrightarrow3x^2-3x+x-1+4x-3x^2=5\)
=>2x=6
=>x=3