Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Vân
Xem chi tiết
nguyen thi be
Xem chi tiết
Tô
Xem chi tiết
Mode Auto iu
5 tháng 9 2019 lúc 16:42
https://i.imgur.com/7VWAhd4.jpg
Cho Doi
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 14:27

Lời giải:

Lấy $x_1\neq x_2\in\mathbb{R}$. Để hàm số đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{(3m-6)(x_1^2-x_2)^2}{x_1-x_2}=(3m-6)(x_1+x_2)>0$

Khi $x>0$ thì $x_1+x_2>0$. Để $y$ đồng biến khi $x>0$ thì $3m-6>0\Leftrightarrow m>2$

Khi $x<0$ thì $x_1+x_2< 0$. Để $y$ đồng biến khi $x< 0$ thì $3m-6< 0\Leftrightarrow m< 2$

Nguyễn Hoàng Bảo Khang
Xem chi tiết
WHAT
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2023 lúc 19:39

Bài 1:

Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0

=>m<>2

a=2-m

b=-2

Bài 2:

a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0

=>m>5

b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0

=>m<5

Bài 3:

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)

b: Để (d1) cắt (d2) thì \(3-m\ne2\)

=>\(m\ne1\)

c: Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2

Khánh Đoàn Minh
Xem chi tiết
Đoàn Đức Hà
11 tháng 8 2021 lúc 20:49

\(y=-\frac{x^3}{3}+2x^2-mx+1\)

\(y'=-x^2+4x-m\)

Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).

Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).

\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).

Khách vãng lai đã xóa
nguyen thi be
Xem chi tiết
Thao An
27 tháng 6 2021 lúc 16:12

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

Phương Anh
Xem chi tiết