Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Phan
Xem chi tiết
Phùng Minh Quân
21 tháng 7 2019 lúc 21:28

\(3=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\le3\)

\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{3^2}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

Ta có:\(x;y;z>0\Leftrightarrow x^3;y^3;z^3\ge0\Leftrightarrow x^3\ge x^2;y^3\ge y^2;z^3\ge z^2\)

\(\Leftrightarrow x^3+y^3+z^3\ge x^2+y^2+z^2hay:x^3+y^3+z^3\ge3\)

Trịnh Trà Giang
22 tháng 7 2019 lúc 8:50

Toàn bài mình không biết.

dam thu a
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
24 tháng 2 2020 lúc 9:29

\(VT=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\sqrt{3\left(x^2+y^2+z^2\right)}}=3\)

Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Annie Scarlet
Xem chi tiết
Nga Pupu
4 tháng 8 2019 lúc 7:26

Có đúng không...? Tớ cũng đang mắc bài này...?

Ta có: \(x^3+y^3+z^3\ge x^2+y^2+z^2\forall x,y,z>0\)

Dấu "=" xảy ra khi x=y=z=1

\(x^2+y^2+z^2=3\)

\(\Rightarrow x^3+y^3+z^3\ge3\)

\(\Rightarrowđpcm\)

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 10:59

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)

\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)

\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)

=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)

Trung Nguyen
Xem chi tiết
Phương Kiều Di
Xem chi tiết
Phương Kiều Di
Xem chi tiết
Phong Tình Tuyết
Xem chi tiết
Akai Haruma
31 tháng 1 2017 lúc 1:54

Lời giải:

Áp dụng bất đẳng thức AM-GM:

\(x^2+xy+y^2=(x+y)^2-xy\geq (x+y)^2-\frac{(x+y)^2}{4}=\frac{3(x+y)^2}{4}\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow A\geq \sqrt{3}(x+y+z)=3\sqrt{3}\) (đpcm)

Dấu $=$ xảy ra khi $x=y=z=1$

kikyou
Xem chi tiết