A=\((\frac{\sqrt{x}+1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}-2}).(x-3\sqrt{x}+2)\) (với x>0; x \(\ne\)4)
a,Rút gọn A
b, Tìm x để A <\(\frac{1}{2}\)
c,Tìm các gt nguyên của x để A có gt nguyên
(làm ơn giúp mk vs huhu..)
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
Đề bài: chứng minh đẳng thức:
a) \(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}=1\)với \(a>0,b>0,a\ne b\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a=1\)với \(a\ne1,a\ge0\)
c) \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)với \(x\ge0,x\ne4,x\ne9\)
d) \(\left(\frac{x+1}{x^3+1}-\frac{1}{-x^2+x-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}+1=\frac{x-1}{x+1}\)với\(x\ne0,x\ne-1,x\ne2\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)=\(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{1+\sqrt{a}}-\frac{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+a\)
=\(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}-\frac{a\left(a-1\right)}{a-1}+a\)=\(1-\sqrt{a}+\sqrt{a}-a+a=1\)
chứng minh
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\)
b. \(\frac{\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right)}{\sqrt{x}-3}=\sqrt{x}+\sqrt{3}\) Với x \(\ge\)2; x \(\ne\)3
c.\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\) Với a > 0; a \(\ne\)1
d.\(\sqrt{\frac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}\) Với x \(\ge\) 0
e. \(\left(x-y\right).\sqrt{\frac{xy}{\left(x-y\right)^2}}\)
1/ Cho D=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}\)với 0≤x≤1
a) Rút gọn
b) CMinh 1\(-\sqrt{D+x+1}=\sqrt{x}\)
2/Cho E=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)với x≥0 và x≠1
a) Rút gọn
b) Tìm giá trị của x để E = \(\frac{1}{2}\)
c) So sánh E với \(\frac{2}{3}\)
3/Cho G=\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)với x≥0,x≠4,x≠9
a) Rút gọn
b) Tìm x để G<1
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
Rút gọn:
A= (\(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\)). \(\frac{\sqrt{x}+1}{\sqrt{x}}\)với x>0 và x\(\ne1\)
B= (\(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\)) : \(\frac{\sqrt{x}+1}{x^2-x}\)với x>0 và x\(\ne1\)
C= ( \(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\)) : \(\frac{1}{\sqrt{a}.\left(\sqrt{a}-1\right)}\)với a>0 và a \(\ne1\)
D= (\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : \(\frac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)với x>0 và x\(\ne1\)
E= ( \(\frac{a\sqrt{a}+1}{a-\sqrt{a}-2}+\frac{a}{2\sqrt{a}-a}\)) :\(\frac{1-\sqrt{a}}{2-\sqrt{a}}\)với a>0, a\(\ne4\),a\(\ne1\) F= ( \(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\)): (\(1+\frac{\sqrt{a}}{a+1}\)) với a>0 giúp mình vs mình tick cho nhiều lắm ạ!!! Mình đang cần gấp mn ơi!?!rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
1) tính
a) (\(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)với x>0 , x khác 1 b) (\(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(x-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)c) \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)với a,b>0 a #b2) Giari phương trình
\(\sqrt[3]{x-8}+\sqrt{x+7}+x^3-8x^2-8x-14=0\)
Mong mọi người giúp mình giải bài với ạ
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\) với x>=0 x khác
9
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)