cho x,y thỏa mãn
mx-y+my=0
tìm điều kiện của m để x,y tỉ lệ thuận
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Cho biết x, y là hai đại lượng tỉ lệ thuận biết rằng với hai giá trị x1, x2 của x thỏa mãn điều kiện 2x1-3x2= -8,25 thì hai giá trị tương ứng của y1, y2 của y thỏa mãn điều kiện 2y1-3y2= 2,75. hỏi x, y liên hệ với nhau bởi công thức nào?
cho biết x và y là hai đại lượng tỉ lệ thuận . Biết rằng với hai giá trị x1,x2 của x thỏa mãn điều kiện 2x1 - 3x2 = -8,25 thì hai giá trị tương ứng y1,2 của y thỏa mãn điều kiện 2y1 - 3y2 = 2,75.Hỏi hai đại lượng x và y liên hệ với nhau bởi công thức nào?
10. Cho x và y là hai đại lương tỉ lệ thuận. Biết rằng với hai giá trị x1, x2 của x thỏa mãn điều kiện 2x1 - 3x2= 42,5 thì hai giá trị tương ứng y1,y2 của y thỏa mãn điều kiện 2y1 - 3y2= -8,5. Hỏi hai đại lượng x và y liên hệ với nhau bởi công thức nào?
1) Tìm các giá trị của m để phương trình\(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\)có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>1; y>0
\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\)
TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0
TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)
\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )
TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\)
Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\)
\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\)
Gộp cả 2 điều kiện x và y ta được m=-1 và m=0
Nãy giờ gõ nó cứ bị lỗi :D
Xét hệ phương trình:
a) CMR với mọi m hệ đều có nghiệm
b) Tìm m để hệ có nghiêm với điều kiện x>0 và y>0
c) Tim m để hệ có nghiệm (x,y) thỏa mãn x=
a: Vì m/1<>-m/1
neen hệ luôn có nghiệm
b: mx-y=2 và x+my=3
=>y=mx-2 và x+m(mx-2)=3
=>y=mx-2 và x(1+m^2)=5
=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1
x>0; y>0
=>5>0 và -2m^2+5m-2>0
=>2m^2-5m+2<0
=>2m^2-4m-m+2<0
=>(m-2)(2m-1)<0
=>1/2<m<2
\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\)
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x<0; y>0
Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x-2y=3
\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)
a, Ta có x < 0 ; y > 0
\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)
Ta có : m - 2 > m - 6
\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)
\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)
Vậy 2 < m < 6
b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)
\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)
Cho x và y là hai đại lượng tỉ lệ thuận . Biết rằng với hai giá trị x1 , x2 của x thỏa mãn điều kiện 2x1 - 3x2 = 42,5 thì hai giá trị tương ứng y1 ; y2 của y thỏa mãn điều kiện 2y1 - 3y2 = -8,5 .Hỏi hai đại lượng x và y liên hệ với nhau bởi công thức nào ?
Theo tính chất của tỉ lệ thuận có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}=\frac{2x_1-3x_2}{2y_1-3y_2}=\frac{42,5}{-8,5}=-5\)
=> x1 = -5.y1
Vậy 2 đại lượng x và y liên hệ với nhau bởi công thức x = -5.y
cho x, y thỏa mãn m.x+y-m.y=0
Tìm m để x ,y tỉ lệ thuận
y(m-1) = m x
Đẻ x,y tỉ lệ thuận => m\(\ne\)0 ; x-1\(\ne\)0 => m\(\ne\)1
Vậy m \(\ne\)0,1