Cho A = 13 + 23 + 33 + ... + 103 . Chứng minh rằng :
a) A chia hết cho 11
b) A chia hết cho 5
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
A = 3^1+3^2+3^3+...+3^30. Chứng minh rằng A chia hết cho 4, A chia hết cho 13
\(A=3^1+3^2+...+3^{30}\)
=> A=3(1+3) +...+ 329(1+3)
=3.4+ ... + 329.4 \(⋮\)4
Chia het 13 ban lam tuong tu nhe
a)chứng mình rằng : 14^14-1 chia hết cho 13
b)chứng minh rằng : 2015^2016 -1 chjia hết cho 2014
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé
chứng minh rằng A=4 +4 mũ 2 +....+4 mũ 23+4 mũ 24
a/A chia hết cho 20
b/A chia hết cho 21
c/A chia hết cho 420
Em hãy chứng minh :
a) A = 21 + 22 + 23 + 24 + .............. + 22010 chia hết cho 3 ; và 7 .
b) B = 31 + 32 + 33 + 34 + ............... + 22010 chia hết cho 4 và 13 .
c) C = 51 + 52 + 53 + 54 + ................... + 52010 chia hết cho 6 và 31 .
d) D = 71 + 72 + 73 + 74 + ...................... + 72010 chia hết cho 8 và 57 .
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
chứng minh rằng :
a) Nếu (abc - deg) chia hết cho 1 thì abcdeg chia hết cho 13
b) Nếu abc chia hết cho 7 thì (2a + 3b +c) chia hết cho 7
ai làm được mình tích cho
Cho a chia hết cho b và b chia hết cho c. Chứng minh rằng: a chia hết cho c
Mình đang cần gấp lắm nha
a chia hết cho b => a=k.b, k thuộc Z
b chia hết cho c => b=m.c, m thuộc Z
Suy ra: a=k.b=k.m.c chia hết cho c
\(a⋮b\Rightarrow a=bk\)\(\left(k\inℕ\right)\)\(\left(1\right)\)
\(b⋮c\Rightarrow b=cq\)\(\left(q\inℕ\right)\)\(\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow a=cqk\)
\(\Rightarrow c\inƯ\left(a\right)\)
\(\Rightarrow a⋮c\left(đpcm\right)\)
Bài 4 : Chứng minh rằng a chia hết b thì |a| cũng chia hết cho |b|
vì |a| =a và |b| cũng bằng b mà a = b
suy ra |a| cũng chia hết cho |b|
cho a,b thuộc N và a + 5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
a+ 5b chia hết cho 7
=> 10*(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+ b + 49 b chia hết cho 7
mà 49b chia hết cho 7
=> 10a+b chia hết cho 7
trình bày đầy đủ, giải hiểu giùm mk nha
a+5b chia hết cho 7
=> 3.(a+5b) chia hết cho 7
=> 3a+15b chia hết cho 7
Mà 7a và 14b đều chia hết cho 7
=> 3a+15b+7a-14b chia hết cho 7
=> 10a+b chia hết cho 7
=> ĐPCM
Tk mk nha
Chứng minh rằng:
a)8102-2102 chia hết cho 10
b)175+244-1321 chia hết cho 10
Ta có : \(17^517.17^4\)có chữ số tận cùng là 7
\(24^4\)có chữ số tận cùng là 6
\(13^{21}=13.\left(13^4\right)^5\)có tận cùng là 3 (\(13^4\)có tận cùng là 1)
Vậy \(17^5+24^4+13^{21}\)có tận cùng ta \(7+6-3=10\)chia hết cho \(10\)