So sánh hai số sau:
\(\sqrt{3\sqrt{3}}\) và \(\sqrt{3}\) +1
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
So sánh hai số sau (không dùng máy tính):
a) 1 và \(\sqrt{2}\)
b) 2 và \(\sqrt{3}\)
c) 6 và \(\sqrt{41}\)
d) 7 và \(\sqrt{47}\)
e) 2 và \(\sqrt{2}+1\)
f) 1 và \(\sqrt{3}-1\)
g) 2\(\sqrt{31}\) và 10
h) \(\sqrt{3}\) và -12
i) -5 và \(-\sqrt{29}\)
giúp e với ạ, em cần gấp
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
so sánh 2 số sau :
\(5 - \sqrt{5] và \sqrt{3} và 1\)
so sánh 2 số sau : \(5 - \sqrt{5} \sqrt{3} và 1\)
\(5-\sqrt{5}.\sqrt{3}=5-\sqrt{5.3}=5-\sqrt{15}\)
\(1=5-4=5-\sqrt{16}\)
-Vì \(-\sqrt{15}>-\sqrt{16}\) nên \(5-\sqrt{15}>5-\sqrt{16}\)
\(\Rightarrow5-\sqrt{5}.\sqrt{3}>1\)
So sánh các số sau: \(\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{11}}\) và \(\dfrac{2}{3}\)
Lời giải:
\(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{11}}> \frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}=\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)
So sánh các số đối của hai số \(\sqrt 2 \) và \(\sqrt 3 \).
Số đối của hai số \(\sqrt 2 \) và \(\sqrt 3 \) lần lượt là \( - \sqrt 2 \) và \( - \sqrt 3 \)
Do \(2 < 3 \Rightarrow \sqrt 2 < \sqrt 3 \Rightarrow - \sqrt 2 > - \sqrt 3 \).
Chú ý: Với hai số thực a,b dương. Nếu a > b thì \(\sqrt a > \sqrt b \).
So sánh hai số sau:
\(a,2\sqrt{3}\) và \(3\sqrt{2}\)
\(b,\sqrt{24}+\sqrt{45}\) và 12
căn 24< căn 25 =5 :
căn 45<căn 49 =7
=> căn 24+ căn 45 < căn 25+ căn 49 =5+7=12
a) \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
Vì 12<18 => \(\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) \(12=5+7=\sqrt{25}+\sqrt{49}>\sqrt{24}+\sqrt{45}\)
a) \(2\sqrt{3}\text{=}\sqrt{2^2.3}\text{=}\sqrt{12}\) (1)
\(3\sqrt{2}\text{=}\sqrt{3^2.2}\text{=}\sqrt{18}\) (2)
Mà 12 < 18 (3)
Từ (1) (2) (3) => \(\sqrt{12}\)< \(\sqrt{18}\)
b) Ta có 12 = 5 + 7 = \(\sqrt{5^2}\)+ \(\sqrt{7^2}\)= \(\sqrt{25}\)+ \(\sqrt{49}\)> \(\sqrt{24}+\sqrt{45}\)
#Iza_dang_cap#
So sánh hai số sau:
a) \(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3+5}\)
b) \(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)