Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shin_
Xem chi tiết
Nguyễn Linh Chi
20 tháng 4 2020 lúc 9:48

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

<=> x + 2015 = 0  ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

<=> x = - 2015 

Vậy x = -2015.

Khách vãng lai đã xóa
ミ★ 🆂🆄🅽 ★彡
20 tháng 4 2020 lúc 9:52

Giải phương trình :

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)

\(\Rightarrow x+2015=0\)

\(\Rightarrow x=-2015\)

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
20 tháng 4 2020 lúc 10:02

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

\(\Rightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)

\(\Rightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}=\frac{x+2015}{2019}+\frac{x+2015}{2020}\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+15\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

\(\Rightarrow x+2015=0\)

\(\Rightarrow x=-2015\)

Vậy x = - 2015 

Khách vãng lai đã xóa
Trịnh Bảo Minh
Xem chi tiết
ミ★ 🆂🆄🅽 ★彡
16 tháng 4 2020 lúc 21:42

Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)

\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)

\(\Rightarrow x+2015=0\Rightarrow x=-2015\)

\(S=\left\{-2015\right\}\)

Khách vãng lai đã xóa
Nguyễn Thế Minh Chiến
16 tháng 4 2020 lúc 21:50

gợi ý 

2017-x-2=2018-3-x=2019-4-x=2020-5-x

Khách vãng lai đã xóa
Ngô Chi Lan
8 tháng 3 2021 lúc 21:30

\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)

\(\Leftrightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)

\(\Leftrightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)

\(\Leftrightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

\(\Leftrightarrow x+2015=0\)

\(\Leftrightarrow x=-2015\)

Khách vãng lai đã xóa
nhóm 5
Xem chi tiết
Nguyễn acc 2
24 tháng 5 2022 lúc 21:24

Tham khảo :

undefined

Nguyen My Van
24 tháng 5 2022 lúc 21:25

Nhận thấy vế trái luôn dương nên \(x-2020\ge0\Leftrightarrow x\ge2020\)

Với \(x\ge2020\Rightarrow\left\{{}\begin{matrix}x-2017\ge0\\2x-2018\ge0\\3x-2019\ge0\end{matrix}\right.\)

PT trở thành: \(x-2017+2x-2018+3x-2019=x-2020\)

Hay kết hợp với điều kiện \(x=\dfrac{4034}{5}\) suy ra PT đã cho vô nghiệm 

Nguyễn Ngọc Huy Toàn
24 tháng 5 2022 lúc 21:25

\(\left|x-2017\right|+\left|2x-2018\right|+\left|3x-2019\right|=x-2020\)

\(ĐK:x\ge2020\)

\(\Leftrightarrow x-2017+2x-2018+3x-2019=x-2020\)

\(\Leftrightarrow5x=4034\)

\(\Leftrightarrow x=806,8\left(tm\right)\)

Vậy \(S=\left\{806,8\right\}\)

 

Minh Hiếu
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 21:05

Lời giải:

a.

PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$

Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$

Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.

b.

$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.

Vậy pt vô nghiệm.

c.

$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm

d.

$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$

Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm.

phamhoangthiennga
Xem chi tiết
Zed phạm
Xem chi tiết
Hồng Nhan
19 tháng 3 2021 lúc 20:50

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)

⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)

\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)

⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)

\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)

⇒ \(x+2021=0\)

⇔ \(x=-2021\)

\(Vậy\) \(x=-2021\)

Hoàng Hưng Đạo
Xem chi tiết
😈tử thần😈
15 tháng 5 2021 lúc 8:23

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022

Giang Nguyen
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
TuiTenQuynh
26 tháng 1 2019 lúc 23:10

\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)

\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)

Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy...